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Abstract. We propose a method of study the M/E,/3/0 queueing systems: standard system
and systems with the threshold and hysteretic strategies of the random dropping of custom-
ers in order to control the input flow. Recurrence relations to compute the stationary
distribution of the number of customers and the steady-state characteristics are obtained.
The developed algorithms are tested on examples using simulation models constructed
with the assistance of the GPSS World tools.

Keywords: three-channel queueing system, Poisson input, Erlangian service times, random
dropping of customers, fictitious phase method, recurrence relations

1. Introduction

There are currently no created analytical methods of study of the M/G/n/m
and M/G/n/oo queueing systems with the number of channels » >1. The M/D/n/w
system is one of the few exceptions. It is possible to obtain some of the characteris-
tics associated with the number of customers in the system [1].

To investigate the single-channel systems with Erlangian service times, in
particular the M/Ey/1/c0 system [1], the method of fictitious phases, developed by
Erlang [2], was applied. The Erlangian service times of the order s means that
each customer runs sequentially s service phases, the duration of which is distrib-
uted exponentially with parameters z,, 14,,..., 1, respectively.

The objective of this work is the construction with the help of the method of
fictitious phase recurrence algorithms for computing the stationary distribution of
the number of customers in the three-channel queueing system M/E,/3/w0, as well
as in the systems of the same type with threshold and hysteretic strategies of
the random dropping of customers. The random dropping of arrivals is a powerful
tool for parameter control of a queueing system. Each arriving customer can be
accepted for service with a probability depending on the queue length at the time
of arrival of the customer, even if the buffer is not completely full [3-6].
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2. The M/E;/3/x system

We consider the M/E,/3/c0 system. Let A be a parameter of the exponential dis-
tribution of the time intervals between moments of arrival of customers. Suppose
that the service time of each customer is distributed under the generalized Erlang
law of the second order, that is, the service time is the sum of two independent
random variables exponentially distributed with parameters £, and i, respectively.

Let n, denote the number of customers in the system and let »,, be the number
of busy channels. In accordance with the method of phases, let us enumerate the
system’s states as follows: s, corresponds to the empty system; s, is the state,

when n, =n,. =1 and the service occurs in the first phase; s, is the state, when
n.=nm, =1 and the service occurs in the second phase; s, is the state, when
n.=m,. =2 and the services occur in the first phase; s, is the state, when
n, =n,. =2 and the services occur in the first and second phase respectively; s,
is the state, when n_=n, =2 and the services occur in the second phase; s 3, is

the state, when n, =k (k>3), n,, =3 and the services occur in the first phase;
Sk 18 the state, when n, =k (k=3), n, =3 and the services in two channels

occur in the first phase and in one channel the service occurs in the second phase;
Skaz) s the state, when n.=k (k=3), n,. =3 and the service in two channels

occur in the second phase and in one channel the service occurs in the first phase;
Sko3 1S the state, when n, =k (k >3), n, =3 and the service occurs in the second

phase. We denote by Po> Praoys Pro1)> P2(20)> P211)> P2(02) > Pr(30)> Pr(21)> Pr(12) and
DPiqs) (k=3) respectively, steady-state probabilities that the system is in the each
of these states. Assuming that p, ) = Py20)> Paar) = Paqi1y> Paqia) = Paoz)» O calcu-

late the steady-state probabilities, we obtain the system of equations:

—APy + 1 Pyory =0,

—(A+ 1) Pyory + B4 Praoy T 2H0 Paony =05

—(A+24)Pyony + H1D2a1) T 34 P303) =0,

—(A+314) D303y T H1P3a02) =0, (D
—(A+ 1) Praoy + APy + HaPoany =0,

—(A+21) Pra0y + APr1oy T HaP3ary =0,

—(A+ 4y + ) Poany + APiory 280 Py T 280 P20y = 05
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~(A+31)Pro) + APraoy T o Pran =0, k23;

(A 424, + 1) Prany + APy T30 Praoy T 240 Penny =0, k23;
~(A+ 4+ 20) Prany + APioran) + 2H0 Priany T30 Py =0, k=3,
—(A+315) Prosy + APi-ro3) + HiPrany =0, k=4

)

Dot Praoy T Piony T Paoy T Paany + Poory + Z(Pk(ao) + Dran t Prany + Prony) =1- 3)
k=3

The steady-state distribution of the number of customers in the M/E,/3/c

. ... M+,
system exists under the condition that AE(7,) <3, where E(7,,) = L2 s the
Hiky
average service time per customer.
Introducing the notation
. ) o - DPiaoy - Doy - P20y - DPran
o=—,i=1,2; n=—"5; Pioy=— > o= Prooy=——_ =P PoanT— >
i Hy Do Po Po Po
- Prozy . - Prizoy - Proy - Prazy . Pro3)
Doy Prooy=—— > Pren=T > PranyT 5 Pro3n T k=3,
Do Do Do Do Do

using equations (1) we find:

Am.0.05, p)
B(ﬂ» al s 0{2 )
2n(eq +3n) P33y + 20 + na;
n(o, +1)+1

Diory =% Dyos) = D3az) = (& +317) D303y

]52(11) =

>

. 4)
N2y +3n0a, +91+3) P33y +2p + 770‘22

(o +2m) (et + 1) +1)

Doy =

b

- - - 1 -
Diaoy =% (g +11) =20 Pynys Paan = ;((0‘1 +2)p - Py )s
where

A, 0,0, ) = oy (o +1)((e + 1)y + 20)er, + 7+ 1) =217y )
—oy (0 +2) ety + 1+ D)= (e +217) =20y + 27 +2) p,
B(n,o,0,) = 2772 ((ozl +D2a; +3na, +917 +3) + (o +2n7)(ex; + 377)).

Recurrence relations (4) contain the parameter p = p, 5, to be determined.
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From equations (2) we obtain the recurrence relations:

Pro3) = Jos(Prciiays Peainys Praiany)» - k24
Prazy = Jia(Prosys Pr-ro3y)s - k24

Prioy = Jao(Prarys Pranys Prany)) - k=35
Prean = I (Pracoys Peaioy)» - k=4,

)

where
1
]‘03(x,y,z)=§((0:1 +2n+Dx—ayy—2z), fi(x,y)=(a +30)x -y,
1 1
f30(x,y,z)=§((al +77+2)x—a1y—2772), le(xa)’):;((al +3)x—a1y).

The system (1)-(3) consists of an infinite number of equations. Let N be a suf-
ficiently large natural number. Writing the normalization condition (3) in the form

Povy T Praoyny t Pronvy t Paoywy T Paanavy T P2y

N (6)
+ Z(pk(30)(N) +Dranvy + Pranavy T Prosny) = s
=3

we determine the approximate values of the stationary probabilities using equations

1

» =14 Praoyny + Pionvy T Pacaoyny + Paanyny + Paoayvy +
0(N)

N

+ kZ;(f’k(m)(N) Do + Prazny T Prosny)s Praoywy = Poony Praoy vy s
Doy = pO(N)ﬁl(Ol)(N)? DPrcoyny = pO(N)ﬁ2(20)(N)’ DPranwny = PO(N)ﬁz(n)(N)»
Prooyny = PO(N)f?z(oz)(N); Praoyny = PO(N)f?k(ao)(N)a Pronmwy = PO(N)i?k(zl)(N)a (7)
Prazivy = Poovy Prazivys Prosyvy = PooyPreosynys 3 <k <N;
Py = Piaoywy T Pronwys Pavy = Pacoxwy T Paanvy T Paozyvys
Prvy = Precoyw) T Peiony + Prazy + Prosyvys 3 SK<N.

Here p, is the steady-state probability that n. =k, p;, is the approximate value
of the probability p,, obtained after replacing condition (3) by equality (6).
Recurrence relations (4) and (5) allow us to calculate p,,;, and consistently

obtain the expression for ﬁl(m)sﬁz(ll)sﬁz(oz)sl~’k(30)aﬁk(21)al~7k(1z) and f)k(03)
(3<k <N) as functions of the unknown parameter p = p,,,. To determine p, we
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use the condition that in the steady state, the average number of busy channels is

equal to the system load factor AE(T,,)=p, +2p, + 32 Dy» Writing it in the form
k=3

N
AE(T,) = pywy + 2Py + 32 Provy-
=3

Using the formulas

E(Q) )
A

N
E(Q) ) = Paw) * Z(k =3)Prvys EW )y = >
k=5
we find approximate values of the average queue length E(Q) and the average
waiting time E(#) in the steady state. The number N is chosen so large that
the condition

E(Q) ) —E(Q)(y-1) <€ )]

holds, where ¢ is a positive number specifying the required accuracy of calcula-
tions.

3. The M/E;/3/x system with the threshold strategy of the random
dropping of customers

We consider for the M/E,/3/00 system a strategy of random dropping of custom-
ers performed according to the rule: if at the time of the arrival of a customer
n. =n (not taking into account the arrived customer), then the customer is accepted

for service with probability S, (0<f, <1) and leaves the system (is discarded)
with probability 1— S,. Confining ourselves to a simplified version of the strategy,
let’s fix a threshold value / (A>5) and suppose that £, =1 for I<n<h-1, and
B,=p (0<p<l) for n>h. The intensity of the simplest flow of customers
received for service as a result of random dropping, is equal to 1 = A4,

The system of equations for determining the steady-state probabilities contains
the equation (1), (3) and the following equations:

~(A+31) Doy + APeao) ¥ Mo Praon =0, 3<k<h-1;

(A 424, + 1) Prany + APkaany T3 Praoy F 240 Prnan =0, 3<k<h-1;
~(A+ 4+ 20) Prany + APy F 200 Peiany T34 Doy =0 3<k<h-1;
~(A+31)Ps) + APryosy + HaPrany =0, 4<k<h-1;
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~(A+ 3440 Puzoy + APnaoy T o Praacan = 0
—(/i + 20+ 1, )ph(ZI) + ﬁph_l(zl) + 3/ulph(30) + 2/“2ph+1(12) =0,

- (10)
—(A+ py +205) Prany + APh1aay T 280 Puary T 340 Priagosy = 05
_(Z +34 )Ph(03) + ﬂ“ph—l(o,?) + Ui Ppany = 0;
~(A+3, )Prcoy + j:pk—l(30) Py =0, htl<k<m+2;
~(A+ 200+ 1) Prony + Zpk—1(21) 31 Proy t 240 P =0, k=h+1; 1

~(A+ M+ 20) Prany + 2pk—1(12) + 20 Prony T3 Prio3 =0, k=h+1;
~(A+ 346) Doy + ipk—1(03) + M Prany=0, k=h+1.

Using equations (1), we have the equalities (4) and from the equations (9) we
obtain the recurrence relations:

D3y = 03 (Piciay> Praqoys Prarony)» - 4<k<h;
D2y = Jio(Prosys Prciosy)» 4<k<h-1;

~ B i (12)
Diioy = Joo(Prarys Pr-1a1ys Prsiny)s - 3Sk<h-1;
Drany = Ja(Piaioys Proazoy)s  4<k<h,
Using equation (10), we find:
Dy = (071 + 377) D03y — A Dp-103)»
- 1/, . - - -
Prio3) = %((al +2n+ l)ph(IZ) = Pyon) ~ 2P )’
. 1/, . . . . (13)
Prioy = g((al 7+ 2) D2ty = A Dp121y — 21 Praran) )>
- 1/, . - -
Py = ;((al + 3)Ph(30> — & P30y ),
A . .
where &, =—, i =1,2. From equations (11) we obtain:
Hi
Dio3y = 803 (Proiin)> Praioys Piciony)» k=2h+2;
D2y = 812 (Pro3ys Pr-103))»  kZh+1; (14)

}3/((30) =830 (i’k(zl)apk—l(zl)ai’k+1(12))a k>h+1,
Doty = €21 (Diciaoys Pr—aioy)» - k2 h+2,
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where
1 - - ~ ~
203 (%, ,2) =§((ozl +2n+Dx—ay-2z), g,(x,y)=(&+3n)x-ay,
1, . - 1, . -
g30(x,y,z)=§((061+77+2)x—0!1y—2772), g21(xay):;((al+3)x_aly)'

Recurrence relations (4), (12)-(14) allow us to calculate p, ;) and consistently
obtain the expression for pyg), Pya1)s Paon)» Praoy> Prcanys Prazy ad Pyos) (k2 3)
as functions of the unknown parameter p = p, . To determine p, we use the
condition that in the steady state the average number of busy channels is equal

h-1 h-1 )
to the system load factor E(TSV)(ZZ D+ 2{1 —Zpk B =p +2p, +32pk.

k=0 k=0 k=3
The steady-state probabilities exist under the condition that iE(TSV) <3. We find

the approximate values of steady-state probabilities by the formulas (7) where
the number N is chosen so large that the condition (8) holds.
The approximate values of the average queue length E(Q), average waiting

time E(/) and probability of service P_, in the steady state
Using the formulas

Y E(Q) )
E(Q) vy = Paony * Z(k =3Py, EW )y = P >
k=5 sv(N) (1 5)
p _ 3(1—P0(N))—2P1(N) — P2y
e o, (+1) ’

we find the approximate values of the average queue length E(Q), average waiting
time E() and probability of service P, in the steady state. The formula for P, is

obtained as the ratio of the average number of serviced customers per unit of time
to the average arrival rate of customers.

4. The M/E,/3/x system with the hysteretic strategy of the random
dropping of customers

We consider for the M/E,/3/00 system a hysteretic strategy of a random dropping
of customers with two thresholds #, and &, (b, >h >4, h, —h >3) and with two
operation modes: basic mode and dropping mode. Assume that 8, =1, I<n<h,,
for the basic mode, and g, = f (0 < f<1), n>h,, for the dropping mode. Here n
is the number of customers in the system at the time of the arrival of a customer
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(not taking into account the arrived customer). If at the time of the arrival of
a customer, condition /s, <n<h, is satisfied, then the mode is not changed.
The dropping mode operates from the time when the number of customers in
the system (on service and in the queue) reaches the value of 4,, to the time when
the number of customers decreases to 4,.

We introduce the following notation for the states of the system in the basic mode:
the states sy, $;.10)> Si(01)> $220)> S2(11)> S2(02) COrrespond to the notation introduced

above, s, is the state, when n,=k(3 <k <h,—1), n,.=3 and the services occur
in the first phase; s, is the state, when n,=k(3<k <h,—1), n,, =3 and the ser-

vices in two channels occur in the first phase and in one channel the service occurs
in the second phase; s, is the state, when n,=k(3<k <h,-1), n,,=3 and the

service in two channels occur in the second phase and in one channel the service
occurs in the first phase; s, s, is the state, when n.=k(3<k<h,-1), n,,=3 and

the service occurs in the second phase. We denote by py, pi9)> Pior)> Pac20)> P2y
Pa02)» Pr(30)> Pr21y» Pri2) and Doy B< k < h, —1) respectively, the steady-state

probabilities that the system is in each of mentioned states. We denote by
Sk(30)» Sk(21)> Sk12) and Sy g3y (k= hy +1) analogous states of the system in the drop-

ping mode and let g, 39)» Gy(21y> qra2) @A Gy(o3, (k= hy+1) denote the steady-state

probabilities that the system is in each of these states.
For determining the steady-state probabilities, we obtain the system containing
the equation (1) and the following equations:

—(A+31) Py + APro1z0) T Mo Praiary =0,
3<k<h —1,h+1<k<h -2,

—(A+ 24 + 1) Prary + APira1y T30 Py + 240 Py = 05
S<k<h —Lh+1<k<h -2 (16)

—(A+ py + 245) Priay T APio1an) + 280 Prany + 34 Presios) =0
3<k<h —1,h+1<k<h,-2;

~(A+31) P03y + APrros) T M Prany =0, 4<k<h -1

—(A+3u, )P, oy + ﬁ’phl—l(30) + 4, (Ph1+1(21) + Qh1+1(21)) =0,
~(A 4200+ 1) Py 21y + APn, 121y + 381 Phy o) + 24 (Ph1+1(12) G +102) ) =0, (17)

(Al 246) Py a0y F AP i)+ 20 Phy 1) T3 10 (p’““(o” " q’”+1(°3)) =0
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~(A+30) Py, 130y ¥ APy -230) = 0 (18)
—(A+ 20+ 1) Py, 101y + APhy-201) + 341 Ppy 130y = 0 (19)
~(A+ 1+ 215) Phy 100y T APhy-200) T 21 Phy1ony = 0 (20)

—(A+3 )9, 110y T Hon, 12021 = 05

—(/i +2u+ )%1+1(21) + 3#1‘1h1+1(30) + 2/“2‘1111+2(12) =0, o
—(A+ 1+ 215)q) 102y + 21490, 11001) T 30 h,42(03) = 0

—(A+31, )‘Ih1+1(03) tHGn a0 = 0;

—(A+ 241+ 1ty Mot jvqk—l(zl) + 300Gk c0) T 20 G = 0 M+ 2<k<h =l k=h+1;
~(A+ 1+ 24 M2+ j“qk—l(IZ) + 200G on F 3 Q03 = 0 M2 <k <=1 k=h+1;
~(A+3m, Mo+ ZQk—1(03) G =0, M+ 2<k<h -l k=h+l;

(22)

—(A+3u, Y1, 30y T Ay -130) T lph2—1(30) + sy, 101 =0,

—(A+241,+ ity My 1)+ iqhz—l(ZI) + APy, a0+ 380y 30) T 24040, 1102) = 05 (23)

A+ + 24 )‘Ihz(lz) + ﬁv%—l(lz) + ﬂ'phz—l(IZ) + 2/‘1%2(21) + 3/“2‘1h2+1(03) =0,
—~(A+3u, Yy 03) + /1%2 “103) T APny 103 F M1y 12) = 0:

Pot Piaoy T Prony t Paoy T Paany t Paoz) + z (Prioy + Prany + Peaay + Prcosy) +
k=3

. (24)
+ Z (Gx30) T Deany T Deay + Diony) =1-
k=t +1

Introduce the notation

- drizo) - Qry qra2)  ~ r(03) .
9ecoy=— > Dey™"_ > ka2~ s Q3= , k=h+1
Po Po Do Po

]32(20>=Pa q~h1+1(o3)=‘]> thﬂ(zl):’”-

Using equations (1), we have the equalities (4) and from the equations (16) we
obtain the recurrence relations:
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Prosy = Jos(Peaaqays Proazys Praeny)s A<k <hy, hy+2<k<h -1
Prazy = S (Prqosy> Prrony s 4sk<h—1;

Prioy = J30(Pi21y> Prai1y> Praiay)> 3Sk<hy =1, hy+1<k<h —-2;
Deon = S Pragoys Peazoy)» A<k <hy, h+2<k<h -1

(25)

Using equations (17), (21), (22) and (18), we find:

- 1 - - -
Pryv103) = g((‘xl +21+1) Py a2) ~ A Ppy-102) — 2Pn, 21— 377Q):

- - . 1 . -
G =@ +3Mq. Gy 03 =§((051 +217+ 1§, 100) — 2’”),

~ 1/ . - - a+3 .

dn,130) = 5((051 +n+2)r - 277flh1+2(12) )a Ap+20) = quhIH(SO);

G0 = 803 Gr-1012)> D202 Ger2ny)» M +3<k<hy, k=h+2;

Gran = €203y Ti-1(03))» M +2<k<h -1, k=h+1; (26)
Gri0) = &30 (ko T2y Geiany)s M+2<k<h -1, k=2h+1;

Grony = 81 (Qh130y> Th-230y s M +3<k<hy, k=h+2;

- 1 - - - -
Pr,oy = 5((051 +10+2) Dy 21y = A Pnyc121) ~ 20 Py, 102y + Dny 12 )»

o,

- 1 . - - -
Pniacn 25((051 +3)Phl(30) ~ Py 1030 _77’”)» Pny130) = 2, 3 Phry-2(30)-

To determine ¢ and r as functions of the parameter p we use the equations (19)
and (20).

The equations (23) allow us to find

67/72(12) =(a,+ 377)‘7112(03) - 071‘?/72—1(03) - 0‘1l~7h2—1(03)’

qhzu(os) = ((071 +2n+ 1)5112(12) - 071‘?112—1(12) - 0‘11~7h2—1(12) - 2‘7;,2(21) ) /(3m),

- 1/, . . . . . 27
1, (30 Zg((‘)ﬁ +1+2)q, 21y = A1y -101) ~ X1 Phy 120~ 21,102 )’

. 1/ . - - -
dn, 101~ ;((0‘1 + 3)%2(30) ~ 1 Yqp,130) ~ X1Phy-1(30) )

To determine p, we use the condition that in the steady state the average number

of busy channels is equal to the system load factor
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hz—l . hz—l hz—l 0
E(TSV)VZpkM[l—Zka=p1+2p2+3 Dot D 4|
k=0 k=0 k=3 k=i +1

The steady-state probabilities exist under the condition that ZE(TSV) <3. Using

the recurrence relations (25)-(27) and the normalization condition (24), we obtain
the approximate values of the steady-state probabilities from the equalities:

1 - - N - -
=14 Piaoyny T Pronvy + Paaoy vy + Doy T Paonyvy +
Pov)y
hy-1 N
+Z (Praoywy t Pranovy T Pranavy t Prosyy)) + z (rox vyt Geanoy T Teaayny T Doz )»
k=3 k=h, 41

Praoyny = PO(N)ﬁl(lo)(N)a Pronwy = PO(N)I~71(01)(N)> Porooyny = PO(N)ﬁz(zo)(N)a

Draniny = pO(N)ﬁZ(ll)(N)’ Poooyny = pO(N)ﬁ2(02)(N);

Prcoyw) = PO(N)i?k(w)(N)s Pronpmn = PO(N)ﬁk(zl)(N)s Pranwy = PO(N)ﬁk(lz)(N>>
Prozyny = pO(N)ﬁk(O,?)(N)’ 3<k<h-1
drioyn) = pO(N)ék(SO)(N)’ i1y Ny = pO(N)ék(Zl)(N)’ dra2wn) = pO(N)ék(n)(N)’
Tro3yv) = Poonydkoayny> M+1<k<N;
Py = DPraoyny T Pronwy > Pavy = Pacoy vy T Paanvy T Pao2yny
Prvy = Proyw) T Praniy T Prazony t Prsynys 3 Sk <hy;
Prvy = Praox vy T Priy T Prayawy T Prosyvy T Deoywy T ey T deazywy

T i(03)n)> h+1<k<h,-1;

Pevy = eisox vy T ko + Deaaon t Doz M <k<N.

Using the formulas (15) we find the approximate values of the stationary character-
istics E(Q), EW) and P_,.

5. Examples for the calculating of stationary characteristics

Introduce the notation for the studied queueing systems. Let the M/E,/3/0
system be the System I, the M/E,/3/c0 system with the threshold strategy of
the random dropping of customers be the System 2 and the M/E,/3/c0 system with
the hysteretic strategy of the random dropping of customers be the System 3.

For all the systems we put: g, =1, ,=2. Let A=1.8 for the System I,

A =225, f=0.8 for the Systems 2 and 3, h=13 for the System 2, 7, =8, h,=13
for the System 3.
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The values of the steady-state probabilities and stationary characteristics of
the systems 1-3, found using the recurrence relations obtained in this paper, are
presented in Tables 1 and 2. In order to verify the obtained values, the tables
contain the computing results evaluated by the GPSS World simulation system [7]

for the time value # =10’
In calculating the approximate values of the steady-state probabilities p,,
the number N is chosen so large that the condition

E(Q) v, ~E(Q) -, <107, (28)

holds. The obtained minimum values of N, for which the condition (28) is satis-
fied, are equal to 156, 164 and 162 for the Systems 1, 2 and 3, respectively.

Table 1
Stationary distribution of the number of customers in the system
(1 - analytical method, 2 - GPSS World)
Values of the steady-state probabilities p,
k System 1 System 2 System 3
1, N=156 2 1,N=164 2 I,N=162 2

0 0.0241532 | 0.0241463 | 0.0019693 | 0.0019621 | 0.0028508 | 0.0028780

1 0.0666245 | 0.0664944 | 0.0068771 | 0.0068758 | 0.0099553 | 0.0100608
2 0.0942915 | 0.0942690 | 0.0124350 | 0.0124441 | 0.0180009 | 0.0180814
3 0.0954951 | 0.0954166 | 0.0163353 | 0.0163913 | 0.0236470 | 0.0237228
4 0.0881153 | 0.0881351 | 0.0197881 | 0.0198060 | 0.0286452 | 0.0287503
5 0.0786458 | 0.0785520 | 0.0233579 | 0.0233281 | 0.0338128 | 0.0338232
6 0.0693057 | 0.0694374 | 0.0273314 | 0.0272895 | 0.0395640 | 0.0395121
7 0.0607719 | 0.0609322 | 0.0318850 | 0.0317958 | 0.0461397 | 0.0460776
8 0.0531851 | 0.0530799 | 0.0371591 | 0.0368896 | 0.0536338 | 0.0536840
9 0.0465099 | 0.0465122 | 0.0432901 | 0.0432911 | 0.0618105 | 0.0619795
10 0.0406604 | 0.0405606 | 0.0504217 | 0.0503929 | 0.0667520 | 0.0670598
20 0.0105844 | 0.0105622 | 0.0296765 | 0.0297640 | 0.0236203 | 0.0235319
30 0.0027549 | 0.0027422 | 0.0077243 | 0.0078382 | 0.0061479 | 0.0060459
40 0.0007170 | 0.0007173 | 0.0020105 | 0.0019613 | 0.0016002 | 0.0016040
50 0.0001866 | 0.0002080 | 0.0005233 | 0.0005068 | 0.0004165 | 0.0004464
60 0.0000486 | 0.0000583 | 0.0001362 | 0.0001378 | 0.0001084 | 0.0001119
70 0.0000126 | 0.0000162 | 0.0000355 | 0.0000264 | 0.0000282 | 0.0000277
80 0.0000033 | 0.0000062 | 0.0000092 | 0.0000095 | 0.0000073 | 0.0000074
90 8.566-1077 | 0.0000008 | 0.0000024 | 0.0000014 | 0.0000019 | 0.0000011
100 2.229-107 | 0.0000008 | 6.251-107 | 0.0000013 | 4.975:107 | 0.0000002
110 5.803-10°° | 0.0000000 | 1.626:1077 | 0.0000009 | 1.295-107 | 0.0000000
130 3.931-107° 1.102:10° | 0.0000000 | 8.773-107°
150 2.663-1071° 7.467-1071° 5.943-1071°
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Table 2
Stationary characteristics of the system
Tlllﬁlzgzm Method E0) E(V) P,

1 analytical 5.7429114 3.1905063 1

1 GPSS World 5.745 3.193 1

2 analytical 12.3769008 6.2553772 0.8793786

2 GPSS World 12.378 6.256 0.879

3 analytical 10.7951977 5.4825119 0.8751218

3 GPSS World 10.790 5.478 0.875

6. Conclusions

The numerical algorithm for solving a system of linear algebraic equations
for the steady-state probabilities, proposed in this paper, is constructed taking into
account the structural features of the system, in particular the presence of three or
four unknown in most of its equations. The obtained recurrence relations are used
for the direct calculation of the solutions of the system, that allow us to reduce
the number of calculations in comparison with application of one of the classical
methods (direct or iterative). Direct methods require the implementation of pre-
liminary transformations of the matrix of the system, and only in the second stage
of computing the solutions is consistently defined. When using iterative methods,
the calculations are performed repeatedly until a solution is found with a given
accuracy. The use of iterative methods is possible only under the condition of
diagonal dominance of the matrix of the system.
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