Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The time-fractional advection-diffusion equation with the Caputo time derivative is studied in a layer. The fundamental solution to the Cauchy problem is obtained using the integral transform technique. The logarithmicsingularity term is separated from the solution. Expressions amenable for numerical treatment are obtained. The numerical results are illustrated graphically.
Rocznik
Tom
Strony
231--244
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
- Institute of Mathematics and Computer Science Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa
autor
- Institute of Mathematics, Częstochowa University of Technology
Bibliografia
- FELLER W. 1971. An Introduction to Probability Theory and Its Applications (2nd ed.). John Wiley & Sons, New York.
- GAFIYCHUK V., DATSKO B. 2010. Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Computers & Mathematics with Applications, 59(3): 1101-1107.
- GORENFLO R., KILBAS A.A., MAINARDI F., ROGOSIN S.V. 2014. Mittag-Leffler Functions. Related Topics and Applications. Springer, New York.
- GORENFLO R., LOUTCHKO J., LUCHKO Yu. 2002. Computation of the Mittag-Leffler function and its derivatives. Fractional Calculus and Applied Analysis, 5(4): 491-518.
- GORENFLO R., MAINARDI F. 1997. Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics (pp. 223-276). Springer, Wien.
- HANYGA A. 2002a. Multi-dimensional solutions of space-time-fractional diffusion equations. Proceedings of the Royal Society of London A, 458(2018): 429-450.
- HANYGA A. 2002b. Multidimensional solutions of time-fractional diffusion-wave equations. Proceedings of the Royal Society of London A, 458(2020): 933-957.
- HUANG F., LIU F. 2005. The time fractional diffusion equation and the advection-dispersion equation. ANZIAM Journal 46(3): 317-330.
- KAVIANY M. 1995. Principles of Heat Transfer in Porous Media (2nd ed.). Springer, New York.
- KILBAS A.A., SRIVASTAVA H.M., TRUJILLO J.J. 2006. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam.
- LIU F., ANH V., TURNER I., ZHUANG P. 2003. Time-fractional advection-dispersion equation. Journal of Applied Mathematics and Computing, 13(1-2): 233-245.
- MAGIN R.L. 2006. Fractional Calculus in Bioengineering. Begell House Publishers, Inc., Redding.
- MAINARDI F. 2010. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London.
- METZLER R., KLAFTER J. 2000. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1): 1-77.
- NIELD D.A., BEJAN A. 2006. Convection in Porous Media (3rd ed.). Springer, New York.
- PODLUBNY I. 1999. Fractional Differential Equations. Academic Press, New York.
- POVSTENKO Y. 2014. Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables. Mathematical Problems in Engineering 2014: 705364-1-7.
- POVSTENKO Y. 2015a. Theory of diffusive stresses based on the fractional advection-diffusion equation. In R. Abi Zeid Daou, M. Xavier (Eds.), Fractional Calculus: Applications (pp. 227-242). NOVA Science Publishers, New York.
- POVSTENKO Y. 2015b. Fractional Thermoelasticity. Springer, New York.
- POVSTENKO Y. 2015c. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhauser, New York.
- POVSTENKO Y., KLEKOT J. 2014. Fundamental solution to the Cauchy problem for the time- fractional advection diffusion equation. Journal of Applied Mathematics and Computational Mechanics, 13(1): 95-102.
- PRUDNIKOV A.P., BRYCHKOV Yu.A., MARICHEV O.I. 1986a. Integrals and Series, Vol. 1: Elementary Functions. Gordon and Breach Science Publishers, Amsterdam.
- PRUDNIKOV A.P., BRYCHKOV Yu.A., MARICHEV O.I. 1986b. Integrals and Series, Vol. 2: Special Functions. Gordon and Breach Science Publishers, Amsterdam.
- RISKEN H. 1989. The Fokker-Planck Equation. Springer, Berlin.
- ROSSIKHIN Yu.A., SHITIKOVA M.V. 1997. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reveiws, 50(1): 15-67.
- SCHEIDEGGER A.E. 1974. The Physics of Flow Through Porous Media (3rd ed.). University of Toronto Press, Toronto.
- SNEDDON I.N. 1972. The Use of Integral Transforms. McGraw-Hill, New York.
- UCHAIKIN V.V. 2013. Fractional Derivatives for Physics and Engineers. Background and Theory. Springer, Berlin.
- VAN KAMPEN N.G. 2007. Stochastic Processes in Physics and Chemistry (3rd ed.). Elsevier, Amsterdam. WEST B.J., BOLOGNA M., GRIGOLINI P. 2003. Physics of Fractals Operators. Springer, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ac0f06a-8180-4d9e-b276-aaa07660d247