Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study is to investigate trends in selected hydroclimatic indices using novel and conventional tools, for future climate projections in the twenty-first century. Selected quasi-natural Norwegian and Polish catchments are used as a case study. The projected flows are provided by GR4J rainfall-runoff conceptual model, coupled with an ensemble of climate model projections from EURO-CORDEX initiative. The trends are analysed using conventional Mann–Kendall and modified Mann–Kendall statistical approaches, a time–frequency approach based on discrete wavelet transform (DWT) and the dynamic harmonic regression (DHR) method. Of all methods applied the DHR gives the most conservative trend estimates. Trends depend on the specific hydroclimatic character and flow regime of the catchment. The results confirmed that in catchments with a rainfall-driven flood regime, an increase in the amount of precipitation is followed by increased flows, with strong seasonal changes, whereas, in catchments with a snow-driven flood regime, despite an increase of mean annual flow, decrease in annual maximum flow is observed. Generally, positive trend is the most dominant in all catchments studied and the methods were consistent in detection of trend except in seasonal trend test.
Wydawca
Czasopismo
Rocznik
Tom
Strony
829--848
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- 1. Abghari H, Tabari H, Talaee PH (2013) River flow trends in the west of Iran during the past 40 years: impact of precipitation variability. Glob Planet Change 101:52–60
- 2. Alfieri L, Feyen L, Di Baldassarre G (2016) Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Clim Change 136:507–521. doi:10.1007/s10584-016-1641-1
- 3. Burn DH, Sharif M, Zhang K (2010) Detection of trends in hydrological extremes for Canadian Watersheds. Hydrol Process 24:1781–1790. doi:10.1002/hyp.7625
- 4. Chaouche K, Neppel L, Dieulin C, Pujol N, Ladouche B, Martin E, Salas D, Caballero Y (2010) Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. C R Geosci 342:234–243
- 5. Chattopadhyay S, Edwards DR (2016) Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate. doi:10.3390/cli4010010
- 6. Chattopadhyay S, Jha MK (2016) Hydrological response due to projected climate variability in Haw River Watershed, North Carolina, USA. Hydrol Sci J 61:495–506. doi:10.1080/02626667.2014.934823
- 7. Cluis D, Langlois C, Vancoillie R, Laberge C (1989) Development of a software package for trend detection in temporal series-application to water and industrial effluent quality data for the St Lawrence River. Environ Monit Assess 13:429–441
- 8. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3):526–553. doi:10.1109/TEVC.2008.2009457
- 9. Douglas EM, Vogel RM, Kroll CN (2000) Trends in flood and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105
- 10. Ficklin DL, Stewart IT, Maurer EP (2013) Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin. PLoS One 8:e71297
- 11. Fleig AK, Tallaksen LM, James P, Hisdal H, Stahl K (2015) Attribution of European precipitation and temperature trends to changes in synoptic circulation. Hydrol Earth Syst Sci 19:3093–3107. doi:10.5194/hess-19-3093-2015
- 12. Gupta V, Kling H, Yilmaz K, Martinez F (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91
- 13. Giuntoli I, Renard B, Vidal J-P, Bard A (2013) Low flows in France and their relationship to largescale climate indices. J Hydrol 482:105–118. doi:10.1016/j.jhydrol.2012.12.038
- 14. Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196
- 15. Hirsch RM, Helsel DR, Cohn TA, Gilroy EJ (1993) Statistical analysis of hydrologic data. In: Maidment DR (ed) Handbook of Hydrology, vol 17. McGraw-Hill, New York, pp 17.11–17.37
- 16. Hu Q, Feng S, Guo H, Chen GY, Jiang T (2007) Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China. J Hydrol 347:90–100
- 17. Ijaz A, Tang D, Wang TF, Wang M, Bakhtawar W (2015) Precipitation trends over time using Mann–Kendall and spearman’s rho tests in Swat River Basin, Pakistan. Adv Meteorol 2015:431860. doi:10.1155/2015/431860
- 18. IPCC (2013) Summary for policymakers. In: Stocker TFD, Qin G-K, Plattner M, Tignor SK, Allen J, Boschung A, Nauels Y, Xia V, Bex PM, Midgley (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
- 19. Jacob D et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578. doi:10.1007/s10113-013-0499-2
- 20. Jeneiova K, Sabo M, Kohnova S (2014) Trend detection in long term maximum annual discharge series in catchments of Slovakia. Acta Hydrol Slov 15:161–170
- 21. Jones MR, Singels A, Ruane AC (2015) Simulated impacts of climate change on water use and yield of irrigated sugarcane in South Africa. Agric Syst 139:260–270. doi:10.1016/j.agsy.2015.07.007
- 22. Kibria K, Ahiablame L, Hay C, Djira G (2016) Streamflow trends and responses to climate variability and land cover change in South Dakota. Hydrology. doi:10.3390/hydrology3010002
- 23. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758
- 24. Kotlarski et al (2014) Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev Discuss 7:217–293
- 25. Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, Hattermann FF, Huang S, Milly PCD, Stoffel M, Driessen PPJ, Matczak P, Quevauviller P, Schellnhuber H-J (2017) Differences in flood hazard projections in Europe—their causes and consequences for decision making. Hydrol Sci J 62(1):1–14
- 26. Le Moine N, Andreassian V, Michel C, Perrin C (2005) How to account for groundwater exchanges in rainfall-runoff models. In: Zerger A, Argent RM (eds) MODSIM. International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. Melbourne, Australia, pp 2932–2938
- 27. Łupikasza E, Hänsel S, Matschullat J (2011) Regional and seasonal variability of extreme precipitation trends in southern Poland and central-eastern Germany 1951–2006. Int J Climatol. doi:10.1002/joc.2229
- 28. Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519:3634–3650
- 29. Mann HB, Whitney DR (1947) On a test whether one or two variables is stochastically larger than the other. Ann Math Stat 18:50–60CrossRefGoogle Scholar
- 30. Meresa HK, Gatachew MT (2016) Modelling of hydrological extremes under climate change scenarios in the Upper Blue Nile River Basin, Ethiopia. J Civil Environ Eng 6:252. doi:10.4172/2165-784X.1000252
- 31. Meresa HK, Romanowicz RJ (2016) The critical role of uncertainty in projections of hydrological Extremes. Hydrol Earth Syst Sci Discuss. doi:10.5194/hess-2016-645
- 32. Meresa HK, Osuch M, Romanowicz RJ (2016) Hydro-meteorological drought projection. Water 6:2016
- 33. Mitof I, Pravalie R (2014) Temporal trends of Hydroclimatic variability in the lower buzau catchment. Geogr Tech 9:87–100
- 34. Mohsin T, Gough W (2010) Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theor Appl Climatol 101:311–327
- 35. Morán-Tejeda E, López-Moreno JI, Ceballos-Barbancho A, Vicente-Serrano SM (2011) River regimes and recent hydrological changes in the Duero Basin (Spain). J Hydrol 404:241–258. doi:10.1016/j.jhydrol.2011.04.034
- 36. Moss R, Edmonds J, Hibbard K, Manning M, Rose S, van Vuuren D, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756
- 37. Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228
- 38. Nalley D, Adamowski J, Khalil B, Ozga-Zielinski B (2013) Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmos Res 132–133:375–398
- 39. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290
- 40. Nourani V, Nezamdoost N, Samadi M, Daneshvar F (2015) Wavelet-based trend analysis of hydrological processes at different timescales. J Water Clim Change IWA Publ 6:414–435
- 41. Osuch M, Lawrence D, Meresa KH, Napiorkowski JJ, Romanowicz J (2016) Projected changes in flood indices in selected catchments in Poland in the twenty first century. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1296-5
- 42. Papadimitriou LV, Koutroulis AG, Grillakis MG, Tsanis IK (2016) High-end climate change impact on European runoff and low flows-exploring the effects of forcing biases. Hydrol Earth Syst Sci 20:1785–1808. doi:10.5194/hess-20-1785-2016
- 43. Partal T (2010) Wavelet transform-based analysis of periodicities and trends of Sakarya basin (Turkey) streamflow data. River Res Appl 26:695–711
- 44. Partal T, Küçük M (2006) Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region. Phys Chem Earth 31:1189–1200
- 45. Peel MC, McMahon TA (2006) Continental runoff: a quality controlled global runoff data set. Nature 444:E14. doi:10.1038/nature05480
- 46. Perrin C, Michel C, Andreassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289
- 47. Piniewski M, Meresa HK, Romanowicz RJ, Osuch M, Szcześniak M, Kardel I, Okruszko T, Mezghani A, Kundzewicz ZW (2017) What can we learn from the projections of changes of flow patterns? Results from Polish case studies. Acta Geophys 1–19. doi:10.1007/s11600-017-0061-6
- 48. Piotrowski A, Maciej JN, Napiorkowski JJ, Osuch M, Kundzewicz ZW (2017) Are modern metaheuristics successful in calibrating simple conceptual rainfall-runoff models? Hydrol Sci J 62(4):606–625. doi:10.1080/02626667.2016.1234712
- 49. Pushpalatha R, Perrin C, Le Moine N, Andréassian V (2012) A review of efficiency criteria suitable for evaluating low-flow simulations. J Hydrol 420–421:171–182. doi:10.1016/j.jhydrol.2011.11.055
- 50. Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in europe using a large ensemble of bias corrected regional climate simulations. J Geophys Res. doi:10.1029/2012JD017461
- 51. Romanowicz J, Bogdanowicz E, Debele E, Doroszkiewicz J, Hisdal H, Lawrence D, Hadush Meresa K, Napiorkowski JJ, Osuch M, Strupczewski WG, Wilson D, Wong WK (2016) Climate change impact on hydrological extremes: preliminary results from the Polish-Norwegian Project. Acta Geophys 64:477–509. doi:10.1515/acgeo-2016-0009
- 52. Sain SR, Furrer R (2010) Combining climate model output via model correlations. Stoch Environ Res Risk Assess 24:821–829. doi:10.1007/s00477-010-0380-5
- 53. Santos CAG, da Silva GBL (2015) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59:312–324. doi:10.1080/02626667.2013.800944
- 54. Shao Q, Li Z, Xu Z (2010) Trend detection in hydrological time series by segment regression with application to Shiyang River Basin. Stoch Env Res Risk Assess 24:221–233
- 55. Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35:L02405
- 56. Sonali P, Kumar DN (2013) Review of trend detection methods and their application to detect temperature changes in India. J Hydrol 476:212–227. doi:10.1016/j.jhydrol.2012.10.034
- 57. Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E, Demuth S, Fendekova M, Jódar J (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382
- 58. Taylor CJ, Pedregal DJ, Young PC, Tych W (2007) Environmental time series analysis and forecasting with the CAPTAIN toolbox. Environ Model Softw 22:797–814
- 59. Tosunoglu F, Kisi O (2016) Trend analysis of maximum hydrological drought variables using Mann-Kendall and sen’s innovative trend method, river research and applications. Applic River Res. doi:10.1002/rra.3106
- 60. Truhetz H, Prein A, Gobiet A (2014) Convection permitting climate simulations (CPCS)-Lessons learned at the Wegener Center. In: Proceedings of 3rd International Lund Regional-Scale Modeling Workshop. International Baltic Earth Secretariat Pub. 3: 141–142, ISSN 2198-4247, Lund
- 61. Vautard R, Yiou P, Otto F, Stott P, Christidis N, van Oldenborgh GJ, Schaller N (2016) Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ Res Lett 11:114009
- 62. Venier M, Hung H, Tych W, Hites A (2012) Temporal trends of persistent organic pollutants: a comparison of different time series models. Environ Sci Technol 46:3928–3934. doi:10.1021/es204527
- 63. Wilson D, Hisdal H, Lawrence D (2010) Has streamflow changed in the Nordic countries? Recent trends and comparisons to hydrological projections. J Hydrol 394:334–346
- 64. Young PC, Pedregal D, Tych W (1999) Dynamic harmonic regression. J Forecast 8:369–394
- 65. Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218
- 66. Yue S, Pilon P, Phinney R, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. doi:10.1002/hyp.1095
- 67. Zhang Z, Dehoff A, Pody R, Balay J (2010) Detection of streamflow change in the Susquehanna River basin. Water Resour Manag 24:1947–1964
- 68. Zhao FF, Xu ZX, Huang JX, Li JY (2008) Monotonic trend and abrupt changes for major climate variables in the headwater catchment of the Yellow River basin. Hydrol Process 22:4587–4599
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3abff920-ab84-4270-b6b5-9e646c78be7a