PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of combined effects of sediment rheology and basement focusing in an unbounded viscoelastic medium using P-SV-wave finite-difference modelling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper consists of two parts. First, a fourth-order-accurate staggeredgrid finite-difference (FD) program for simulation of P-SV-wave in viscoelastic medium is presented. The incorporated realistic damping is based on GMB-EK-model. The accuracy of program is validated by comparing computed phase-velocity and quality-factors with same based on GMB-EK-model and Futterman’s relations. The second part of paper presents the combined effects of sediment damping and synclinal basement focusing (SBT) on ground motion. The results reveal SBT focusing, mode conversion and diffraction of incident waves. The response of elastic SBT model reveals an increase of spectral amplification with increasing frequency. The viscoelastic response of SBT model reveals that a particular frequency may get largest amplification for a particular set of values for damping, focal-length and distance from tip of the SBT. This frequency-dependent amplification may explain mysterious damage reported in some past earthquakes if predominantly amplified frequency matches natural frequency of damaged structures.
Czasopismo
Rocznik
Strony
1214--1245
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, India
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, India
Bibliografia
  • [1] Alex, C.M., and K.B. Olsen (1998), Lens-effect in Santa Monica?, Geophys. Res. Lett. 25,18, 3441–3444, DOI: 10.1029/98GL52668. http://dx.doi.org/10.1029/98GL52668
  • [2] Bard, P.Y., and J. Riepl-Thomas (2000), Wave propagation in complex geological structures and their effects on strong ground motion. In: E. Kausel and G. Manolis (eds.), Wave Motion in Earthquake Engineering, International Series on Advances in Earthquake Engineering, WIT Press, Southampton, 37–95.
  • [3] Booth, D.B., R.E. Wells, and R.W. Givler (2004), Chimney damage in the greater Seattle area from the Nisqually earthquake of 28 February 2001, Bull. Seismol. Soc. Am. 94,3, 1143–1158, DOI: 10.1785/0120030102. http://dx.doi.org/10.1785/0120030102
  • [4] Carcione, J.M., D. Kosloff, and R. Kosloff (1988), Wave propagation simulation in a linear viscoacoustic medium, Geophys. J. Int. 93,2, 393–407, DOI: 10.1111/j.1365-246X.1988.tb02010.x. http://dx.doi.org/10.1111/j.1365-246X.1988.tb02010.x
  • [5] Clayton, R.W., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am. 67,6, 1529–1540.
  • [6] Day, S.M., and J. B. Minster (1984), Numerical simulation of attenuated wavefields using a Padé approximant method, Geophys. J. Roy. Astr. Soc. 78,1, 105–118, DOI: 10.1111/j.1365-246X.1984.tb06474.x. http://dx.doi.org/10.1111/j.1365-246X.1984.tb06474.x
  • [7] Davis, P.M., L.J. Rubinstein, K.H. Liu, S.S. Gao, and L. Knopoff (2000), Northridge earthquake damage caused by geologic focusing of seismic waves, Science 289,5485, 1746–1750, DOI: 10.1126/science. 289.5485.1746. http://dx.doi.org/10.1126/science.289.5485.1746
  • [8] Emmerich, H., and M. Korn (1987), Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics 52,9, 1252–1264, DOI: 10.1190/1.1442386. http://dx.doi.org/10.1190/1.1442386
  • [9] Futterman, W.I. (1962), Dispersive body waves, J. Geophys. Res. 67,13, 5279–5291, DOI: 10.1029/JZ067i013p05279. http://dx.doi.org/10.1029/JZ067i013p05279
  • [10] Frankel, A., W. Stephenson, and D. Carver (2009), Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations, Bull. Seismol. Soc. Am. 99,3, 1579–1611, DOI: 10.1785/0120080203. http://dx.doi.org/10.1785/0120080203
  • [11] Frehner, M., S.M. Schmalholz, E.H. Saenger, and H. Steeb (2008), Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves, Phys. Earth Planet. Int. 171,1–4, 112–121, DOI: 10.1016/j.pepi.2008.07.003. http://dx.doi.org/10.1016/j.pepi.2008.07.003
  • [12] Galis, M., P. Moczo, and J. Kristek (2008), A 3-D hybrid finite-difference-finite-element viscoelastic modeling of seismic wave motion, Geophys. J. Int. 175,1, 153–184, DOI: 10.1111/j.1365-246X.2008.03866.x. http://dx.doi.org/10.1111/j.1365-246X.2008.03866.x
  • [13] Gao, S., H. Liu, P.M. Davis, and G.L. Knopoff (1996), Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: Ewidence of focusing in Santa Monica, Bull. Seismol. Soc. Am. 86,1B, S209–S230.
  • [14] Hartzell, S., E. Cranswick, A. Frankel, D. Carver, and M. Meremonte (1997), Variability of site response in the Los Angeles urban area, Bull. Seismol. Soc. Am. 87,6, 1377–1400.
  • [15] Ihnen, S.M., and D.M. Hadley (1986), Prediction of strong ground motion in the Puget Sound region: the 1965 Seattle earthquake, Bull. Seismol. Soc. Am. 76,4, 905–922.
  • [16] Israeli, M., and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comp. Phys. 41,1, 115–135, DOI: 10.1016/0021-9991(81)90082-6. http://dx.doi.org/10.1016/0021-9991(81)90082-6
  • [17] Kristek, J., and P. Moczo (2003), Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finite difference modeling, Bull. Seismol. Soc. Am. 93,5, 2273–2280, DOI: 10.1785/0120030023. http://dx.doi.org/10.1785/0120030023
  • [18] Kumar, S., and J.P., Narayan (2008), Absorbing boundary conditions in a 4th order accurate SH-wave staggered grid finite difference program with variable grid size, Acta Geophys. 56,4, 1090–1108, DOI: 10.2478/s11600-008-0043-9. http://dx.doi.org/10.2478/s11600-008-0043-9
  • [19] Levander, A.R. (1988), Fourth-order finite-difference P-SV seismograms, Geophysics 53,11, 1425–1436, DOI: 10.1190/1.1442422. http://dx.doi.org/10.1190/1.1442422
  • [20] Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am. 66,3, 639–666.
  • [21] Moczo, P., and P.-Y Bard (1993), Wave diffraction, amplification and differential motion near strong lateral discontinuities, Bull. Seismol. Soc. Am. 83,1, 85–106.
  • [22] Moczo, P., E. Bystricky, J. Kristek, J.M. Carcione, and M. Bouchon (1997), Hybrid modelling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seismol. Soc. Am. 87,5, 1305–1323.
  • [23] Moczo, P., J. Kristek, and E. Bystricky (2000), Stability and grid dispersion of the P-SV 4th-order staggered-grid finite-difference schemes, Stud. Geophys. Geod. 44,3, 381–402, DOI: 10.1023/A:1022112620994. http://dx.doi.org/10.1023/A:1022112620994
  • [24] Moczo, P., J. Kristek, V. Vavryčuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modelling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am. 92,8, 3042–3066, DOI: 10.1785/0120010167. http://dx.doi.org/10.1785/0120010167
  • [25] Narayan, J.P. (2003), Simulation of ridge-weathering effects on the ground motion characteristics, J. Earthq. Eng. 7,3, 447–461, DOI: 10.1080/13632460309350458.
  • [26] Narayan, J.P. (2005), Study of basin-edge effects on the ground motion characteristics using 2.5-D modeling, Pure Appl. Geophys. 162,2, 273–289, DOI: 10.1007/s00024-004-2600-8. http://dx.doi.org/10.1007/s00024-004-2600-8
  • [27] Narayan, J.P. (2012), Effects of P-wave and S-wave impedance contrast on the characteristics of basin transduced Rayleigh waves, Pure Appl. Geophys. 169,4, 693–709, DOI: 10.1007/s00024-011-0338-7. http://dx.doi.org/10.1007/s00024-011-0338-7
  • [28] Narayan, J.P., and S. Kumar (2008), A fourth order accurate SH-wave staggered grid finite-difference algorithm with variable grid size and VGR-stress imaging technique, Pure Appl. Geophys. 165,2, 271–294, DOI: 10.1007/s00024-008-0298-8. http://dx.doi.org/10.1007/s00024-008-0298-8
  • [29] Narayan, J.P., and S. Kumar (2010), A 4th order accurate P-SV wave staggered grid finite difference algorithm with variable grid size and VGR-stress imaging technique, Geofizika 27,1, 45–68.
  • [30] Narayan, J.P., and P.V. Prasad Rao (2003), Two and half dimensional simulation of ridge effects on the ground motion characteristics, Pure Appl. Geophys. 160,8, 1557–1571, DOI: 10.1007/s00024-003-2360-x. http://dx.doi.org/10.1007/s00024-003-2360-x
  • [31] Narayan, J.P., and A. Ram (2006), Numerical modelling of the effects of an underground ridge on earthquake-induced 0.5–2.5 Hz ground motion, Geophys. J. Int. 165,1, 180–196, DOI: 10.1111/j.1365-246X.2006.02874.x. http://dx.doi.org/10.1111/j.1365-246X.2006.02874.x
  • [32] Narayan, J.P., and A.A. Richharia (2008), Effects of strong lateral discontinuity on ground motion characteristics and aggravation factor, J. Seismol. 12,4, 557–573, DOI: 10.1007/s10950-008-9109-z. http://dx.doi.org/10.1007/s10950-008-9109-z
  • [33] Saenger, E.H., S.A Shapiro, and Y. Keehm (2005), Seismic effects of viscous Biotcoupling: Finite difference simulations on micro-scale, Geophys. Res. Lett. 32,14, L14310, DOI: 10.1029/2005GL023222. http://dx.doi.org/10.1029/2005GL023222
  • [34] Stephenson, W.J., A.D. Frankel, J.K. Odum, R.A. Williams, and T.L. Pratt (2006), Towards resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage, Geophys. Res. Lett. 33,6, L06316, DOI: 10.1029/2005GL025037. http://dx.doi.org/10.1029/2005GL025037
  • [35] Virieux, J. (1986), P-SV wave propagation in heterogeneous media; velocity-stress finte-diffeence method, Geophysics 51,4, 889–901, DOI: 10.1190/1.1442147. http://dx.doi.org/10.1190/1.1442147
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3abf7a83-8b66-4d7e-9f4d-7b3b3d8c99e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.