PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A hybrid geometallurgical study using coupled Historical Data (HD) and Deep Learning (DL) techniques on a copper ore mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research work introduces a novel hybrid geometallurgical approach to develop a deep and comprehensive relationship between geological and mining characteristics with metallurgical parameters in a mineral processing plant. This technique involves statistically screening mineralogical and operational parameters using the Historical Data (HD) method. Further, it creates an intelligent bridge between effective parameters and metallurgical responses by the Deep Learning (DL) simulation method. In the HD method, the time and cost of common approaches in geometallurgical studies were minimized through the use of available archived data. Then, the generated DL-based predictive model was enabled to accurately forecast the process behavior in the mineral processing units. The efficiency of the proposed method for a copper ore sample was practically evaluated. For this purpose, six representative samples from different active mining zone were collected and used for flotation tests organized using a randomizing code. The experimental results were then statistically analyzed using HD method to assess the significance of mineralogical and operational parameters, including the proportions of effective minerals, particle size, collector and frother concentration, solid content and pH. Based on the HD analysis, the metallurgical responses including the copper grade and recovery, copper kinetics constant and iron grade in concentrate were modeled with an accuracy of about 90%. Next, the geometallurgical model of the process was developed using the long short-term memory neural network (LSTM) algorithm. The results showed that the studied metallurgical responses could be predicted with more than 95% accuracy. The results of this study showed that the hybrid geometallurgy approach can be used as a promising tool to achieve a reliable relationship between the mining and mineral processing sectors, and sustainable and predictable production.
Rocznik
Strony
art. no. 147841
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
  • Department of Mineral Processing, Faculty of Engineering, Tarbiat Modares University, 14115111, Tehran, Iran
autor
  • FOCUS Minerals Engineering Research Center, Research and Development Division, Zarand, Iran
  • Department of Mining Engineering, Higher Education Complex of Zarand, 7761156391, Zarand, Iran
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, 7031 Trondheim, Norway
  • Maelgwyn Mineral Services Ltd, Ty Maelgwyn, 1A Gower Road, Cathays, Cardiff CF24 4PA, United Kingdom
Bibliografia
  • AGHELI, A., HASSANZADEH, A., HASSAS, B.V., HASANZADEH, M., 2018. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. Int. J. Min. Sci. Technol. 28(2), 167–176.
  • ALRUIZ, O.M., MORRELL, S., SUAZO, C.J., NARANJO, A., 2009. A novel approach to the geometallurgical modelling of the Collahuasi grinding circuit. Miner. Eng. 22, 1060–1067.
  • AMER, T.E., EL ASSAY, I.E., REZK, A.A., EL KAMMAR, A.M., EL MANAWI, A.W., ABU KHOZIEM, H.A., 2014. Geometallurgy and processing of North Ras Mohamed poly-mineralized ore materials, South Sinai, Egypt. Int. J. Miner. Process. 129, 12–21.
  • APAYDIN, H., FEIZI, H., SATTARI, M.T., COLAK, M.S., SHAMSHIRBAND, S., CHAU, K., 2020. Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water 12(5), 1500.
  • ASADI, E., ISAZADEH, M., SAMADIANFARD, S., RAMLI, M.F., MOSAVI, A., NABIPOUR, N., SHAMSHIRBAND, S., HAJNAL, E., CHAU, K., 2020. Groundwater quality assessment for sustainable drinking and irrigation. Sustain. 12(1), 177.
  • AZIZI, A., HASSANZADEH, A., FADAEI, B., 2015. Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore. Int. J. Min. Sci. Technol. 25(5), 849–854.
  • BECKER, M.A., HARRIS, P.G., WIESE, J.G., BRADSHAW, D.J., 2009. Mineralogical characterisation of naturally floatable gangue in Merensky Reef ore flotation. Int. J. Miner. Process. 93, 246–255.
  • BENGIO, Y., SIMARD, P., FRASCONI, P., 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neur. Net. 5(2), 157–166.
  • BERNICO, M., 2018. Deep learning quick reference: useful hacks for training and optimizing deep neural networks with TensorFlow and Keras. Packt Publishing Ltd., New York, USA.
  • BOVEIRI, R., SHOJAEI, V., KHOSHDAST, H., 2019. Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. J. Environ. Manag. 231, 1182–1192.
  • CALIN, O., 2020. Deep learning architectures. Springer Nature, Cham, Switzerland.
  • DEHAINE, Q., FILIPPOV, L.O., GLASS, H.J., ROLLINSON, G.K., 2019. Rare-metal granites as a potential source of critical metals: A geometallurgical case study. Ore Geol. Rev. 104, 384–402.
  • DEHAINE, Q., TIJSSELING, L.T., GLASS, H.J., TÖRMÄNEN, T., BUTCHER, A.R., 2021. Geometallurgy of cobalt ores: A review. Miner. Eng. 160, 106656.
  • DEHAINE, Q., TIJSSELING, L.T., ROLLINSON, G.K., BUXTON, M.W.N., GLASS, H.J., 2022. Geometallurgical characterisation with portable FTIR: Application to sediment-hosted Cu-Co ores. Miner. 12, 15.
  • FARROKHPAY, S., FILIPPOV, L., FORNASIERO, D., 2021. Flotation of fine particles: A review. Miner. Process. Ext. Metal. Rev. 42(7), 473–483.
  • GHOBADI, P., YAHYAEI, M., BANISI, S., 2011. Optimization of the performance of flotation circuits using a genetic algorithm oriented by process-based rules. Int. J. Miner. Process. 98(3–4), 174–181.
  • GHOLAMI, A.R., KHOSHDAST, H., 2020. Using artificial neural networks for the intelligent estimation of selectivity index and metallurgical responses of a sample coal bioflotation by rhamnolipid biosurfactants. Ener. Res. A: Rec. Util. Environ. Eff., doi: 10.1080/15567036.2020.1857477.
  • GHOLAMI, A.R., KHOSHDAST, H., HASSANZADEH, A., 2021. Using hybrid neural networks/genetic and artificial bee colony algorithms to simulate the bio-treatment of dye-polluted wastewater using rhamnolipid biosurfactants. J. Environ. Manag. 299, 113666.
  • GRAVES, A., 2012. Long short-term memory. In Supervised sequence labelling with recurrent neural networks. Springer, Berlin, Germany.
  • HASSANZADEH, A., AZIZI, A., KOUACHI, S., KARIMI, M., CELIK, M.S., 2019. Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations. Miner. Eng. 141, 105836.
  • HASSANZADEH, A., FIROUZI, M., ALBIJANIC, B., CELIK, M.S., 2018. A review on determination of particle–bubble encounter using analytical, experimental and numerical methods. Miner. Eng. 122, 296–311.
  • HASSANZADEH, A., KARAKAŞ, F., 2017a. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. J. Dis. Sci. Technol. 38(2), 309–316.
  • HASSANZADEH, A., KARAKAŞ, F., 2017b. The kinetics modeling of chalcopyrite and pyrite, and the contribution of particle size and sodium metabisulfite to the flotation of copper complex ores. Part. Sci. Technol. 35(4), 455–461.
  • HOAL, K., 2008. Getting the geo into geomet. SEG Newsl. 73(73), 11–15.
  • HOAL, K.O., APPLEBY, S.K., STAMMER, J.G., PALMER, C., 2009. SEM-based quantitative mineralogical analysis of peridotite, kimberlite and concentrate. Lithos 112, 41–46.
  • HOCHREITER, S., SCHMIDHUBER, J., 1997. Long short-term memory. Neur. Comput. 9(8), 1735–1780.
  • HOSEINIAN, F.S., ABDOLLAHZADE, A., MOHAMADI, S.S., HASHEMZADEH, M., 2017. Recovery prediction of copper oxide ore column leaching by hybrid neural genetic algorithm. Trans. Nonfer. Metal Soc. China 27(3), 686–693.
  • HOSEINIAN, F.S., REZAI, B., KOWSARI, E., SAFARI, M., 2020. A hybrid neural network/genetic algorithm to predict Zn (II) removal by ion flotation. Sep. Sci. Technol. 55(6), 1197–1206.
  • JORJANI, E., BAGHERIEH, A., MESROGHLI, S., CHELGANI, S.C., 2008. Prediction of yttrium, lanthanum, cerium, and neodymium leaching recovery from apatite concentrate using artificial neural networks. J. Uni. Sci. Technol. Beijing Miner Metal. Mater. 15(4), 367–374.
  • KHOSHDAST, H., GHOLAMI, A.R., HASSANZADEH, A., NIEDOBA, T., SUROWIAK, A., 2021. Advanced simulation of removing chromium from a synthetic wastewater by rhamnolipidic bioflotation using hybrid neural networks with metaheuristic algorithms. Mater. 14, 2880.
  • KHOSHDAST, H., SAM, A., MANAFI, Z., 2012. The use of rhamnolipid biosurfactants as a frothing agent and a sample copper ore response. Miner. Eng. 26, 41–49.
  • KHOSHDAST, H., SAM, A., VALI, H., AKBARI NOGHABI, K., 2011. Effect of rhamnolipid biosurfactants on performance of coal and minerals flotation. Int. Biodeter. Biodegrad. 65, 1238–1243.
  • LANG, A.M., AASLY, K., ELLEFMO, S.L., 2018. Mineral characterization as a tool in the implementation of geometallurgy into industrial mineral mining. Miner. Eng. 116, 114–122.
  • LE, X.H., HO, H.V., LEE, G., JUNG, S., 2019. Application of long short-term memory (LSTM) neural network for flood forecasting. Water 11(7), 1387.
  • LUND, C., LAMBERG, P., LINDBERG, T., 2013. Practical way to quantify minerals from chemical assays at Malmberget iron ore operations—An important tool for the geometallurgical program. Miner. Eng. 49, 7–16.
  • MILIVOJEVIC, M., STOPIC, S., FRIEDRICH, B., STOJANOVIC, B., DRNDAREVIC, D., 2012. Computer modeling of high-pressure leaching process of nickel laterite by design of experiments and neural networks. Int. J. Miner. Metal. Mater. 19(7), 584–594.
  • MONTGOMERY, D.C., 2001. Design and analysis of experiments. John Wiley & Sons, New York, USA.
  • NAVARRA, A., MENZIES, A., JORDENS, A., WATERS, K., 2017. Strategic evaluation of concentrator operational modes under geological uncertainty. Int. J. Miner. Process. 164, 45–55.
  • PARIAN, M., LAMBERG, P., MöCKEL, R., ROSENKRANZ, J., 2015. Analysis of mineral grades for geometallurgy: Combined element-to-mineral conversion and quantitative X-ray diffraction. Miner. Eng. 82, 25–35.
  • PARIAN, M., LAMBERG, P., ROSENKRANZ, J., 2018a. Process simulations in mineralogy-based geometallurgy of iron ores. Miner. Proc. Ext. Metal., doi: 10.1080/25726641.2018.1507072.
  • PARIAN, M., MWANGA, A., LAMBERG, P., ROSENKRANZ, J., 2018b. Ore texture breakage characterization and fragmentation into multiphase particles. Powder Technol. 327, 57–69.
  • PÉREZ-BARNUEVO, L., LÉVESQUE, S., BAZIN, C., 2018. Drill core texture as geometallurgical indicator for the Mont-Wright iron ore deposit (Quebec, Canada). Miner. Eng. 122, 130–141.
  • PHILANDER, C., ROZENDAAL, A., 2013. The application of a novel geometallurgical template model to characterise the Namakwa Sands heavy mineral deposit, West Coast of South Africa. Miner. Eng. 52, 82–94.
  • PHILANDER, C., ROZENDAAL, A., 2014. A process mineralogy approach to geometallurgical model refinement for the Namakwa Sands heavy minerals operations, west coast of South Africa. Miner. Eng. 65, 9–16.
  • PU, Y., SZMIGIEL, A., APEL, D.B., 2020. Purities prediction in a manufacturing froth flotation plant: the deep learning techniques. Neur. Comput. App., 1–11.
  • SCHOBER, P., BOER, C., SCHWARTE, L.A., 2018. Correlation coefficients: appropriate use and interpretation. Anes. Anal. 126(5), 1763–1768.
  • SHAK, K.P.Y., WU, T.Y., 2015. Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater. Ind. Crop. Prod. 76, 1169–1178.
  • SHAMSHIRBAND, S., HASHEMI, S., SALIMI, H., SAMADIANFARD, S., ASADI, E., SHADKANI, S., KARGAR, K., MOSAVI, A., NABIPOUR, N., CHAU, K., 2020. Predicting standardized streamflow index for hydrological drought using machine learning models. Eng. App. Comput. Fluid Mech. 14(1), 339–350.
  • SOBOUTI, A., HOSEINIAN, F.S., REZAI, B., JALILI, S., 2019. The lead recovery prediction from lead concentrate by an artificial neural network and particle swarm optimization. Geosys. Eng. 22(6), 319–327.
  • TRIFFETT, B., VELOO, C., ADAIR, B.J.I., BRADSHAW, D., 2008. An investigation of the factors affecting the recovery of molybdenite in the kennecott utah copper bulk flotation circuit. Miner. Eng. 21, 832–840.
  • TUNGPALAN, K., MANLAPIG, E., ANDRUSIEWICZ, M., KEENEY, L., WIGHTMAN, E., EDRAKI, M., 2015. An integrated approach of predicting metallurgical performance relating to variability in deposit characteristics. Miner. Eng. 71, 49–54.
  • UZAIR, M., JAMIL, N., 2020. Effects of hidden layers on the efficiency of neural networks. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), November, p.p. 1–6.
  • VYAS, S., DAS, S., TING, Y-P., 2020. Predictive modeling and response analysis of spent catalyst bioleaching using artificial neural network. Biores. Technol. Rep. 9, 100389.
  • YETILMEZSOY, K., DEMIREL, S., VANDERBEI, R.J., 2009. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171, 551–562.
  • YINGLING, J., 1990. Circuit analysis: optimizing mineral processing flowsheet layouts and steady-state control specifications. Int. J. Min. Process. 29, 149–174.
  • ZHAO, J., HUANG, F., LV, J., DUAN, Y., QIN, Z., LI, G., TIAN, G., 2020. Do RNN and LSTM have long memory?. In: International Conference on Machine Learning, November, pp. 11365–11375.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3abe284c-af87-4e15-a401-924a7ba9ae8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.