PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterisation of a graphene/NPB structure with Re2O7 as an interfacial layer for OLED application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A graphene/NPB structure with Re₂O₇ as an interfacial layer in the context of its potential use in the design of an organic light-emitting diode (OLED) is investigated. The X-ray photoelectron spectroscopy (XPS) study shows the formation of the Re₂O₇ phase on a monolayer graphene on quartz during thermal deposition in ultra-high vacuum (UHV). The ultraviolet photoelectron spectroscopy (UPS) study shows an enhancement of the work function of the graphene heterostructure after deposition of the Re₂O₇ layer up to 5.4 eV. The hole injection barrier between the Re₂O₇/graphene heterostructure and the N-bis-(1- naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine (NPB) layer was estimated to be 0.35 eV, which is very promising for a good OLED performance.
Słowa kluczowe
EN
Rocznik
Strony
art. no. e148441
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
  • Department of Physics, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
  • Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
Bibliografia
  • [1] Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752-7777 (2009). https://doi.org/10.1002/anie.200901678.
  • [2] Weng, Z. et al. Wafer-scale graphene anodes replace indium tin oxide in organic light-emitting diodes. Adv. Opt. Mater. 10, 2101675 (2022). https://doi.org/10.1002/adom.202101675.
  • [3] Kwon, O. E. et al. A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Disp. 21, 49-56 (2020). https://doi.org/10.1080/15980316.2019.1680452.
  • [4] Krukowski, P. et al. Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics. Opto-Electron. Rev. 30, e141953 (2022). https://doi.org/10.24425/opelre.2022.141953.
  • [5] Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. Tuning the work function of graphene toward application as anode and cathode. J. Alloys Compd. 805, 1117-1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187.
  • [6] Yoon, T., Wu, Q., Yun, D.-J., Kim, S. H. & Song, Y. J. Direct tuning of graphene work function via chemical vapor deposition control. Sci. Rep. 10, 9870 (2020). https://doi.org/10.1038/s41598-020-66893-y.
  • [7] Tan, R. K. L. et al. Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5, 17777-17803 (2017). https://doi.org/10.1039/C7TA05759H.
  • [8] Yang, N. et al. Design and adjustment of the graphene work function via size, modification, defects, and doping: a first-principle theory study. Nanoscale Res. Lett. 12, 642 (2017). https://doi.org/10.1186/s11671-017-2375-3.
  • [9] Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380.
  • [10] Kowalczyk, D. A. et al. Local electronic structure of stable monolayers of α-MoO3-x grown on graphite substrate. 2D Mater. 8, 25005 (2020). https://doi.org/10.1088/2053-1583/abcf10.
  • [11] Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces 14, 44506-44515 (2022). https://doi.org/10.1021/acsami.2c09946.
  • [12] Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au 2, 450-485 (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017.
  • [13] Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Adv. Eng. Mater. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955.
  • [14] Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117-120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26.
  • [15] Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Surf Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033.
  • [16] Le, Q.-T. et al. Interface formation between NPB and processed indium tin oxide. Thin Solid Films 363, 42-46 (2000). https://doi.org/10.1016/S0040-6090(99)00979-7.
  • [17] Ha, J. M., Hur, S. H., Pathak, A., Jeong, J.-E. & Woo, H. Y. Recent advances in organic luminescent materials with narrowband emission. NPG Asia Mater. 13, 53 (2021). https://doi.org/10.1038/s41427-021-00318-8.
  • [18] Pan, S. et al. Toward improved device efficiency and stability of organic light-emitting diodes via external pressure treatment. Phys. Status Solidi A 218, 2100120 (2021). https://doi.org/10.1002/pssa.202100120.
  • [19] Le, Q. T. et al. X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices. J. Vac. Sci. Technol. A 17, 2314-2317 (1999). https://doi.org/10.1116/1.581766.
  • [20] Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021). https://doi.org/10.1016/j.apsadv.2021.100112.
  • [21] Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 228, 521-541 (2014). https://doi.org/10.1515/zpch-2014-0002.
  • [22] Zubkins, M. et al. Tailoring of rhenium oxidation state in ReOx thin films during reactive HiPIMS deposition process and following annealing. Mater. Chem. Phys. 289, 126399 (2022). https://doi.org/10.1016/j.matchemphys.2022.126399.
  • [23] Kim, J. W. & Kim, A. Absolute work function measurement by using photoelectron spectroscopy. Curr. App. Phys. 31, 52-59 (2021). https://doi.org/10.1016/j.cap.2021.07.018.
  • [24] Baikie, I. D. et al. Work function study of rhenium oxidation using an ultra high vacuum scanning Kelvin probe. J. Appl. Phys. 88, 4371-4375 (2000). https://doi.org/10.1063/1.1289486.
  • [25] Wu, Q.-H. et al. Electronic structure of MoO3-x/graphene interface. Carbon 65, 46-52 (2013). https://doi.org/10.1016/j.carbon.2013.07.091.
  • [26] Lawler, K. V et al. Molecular and electronic structures of M2O7 (M = Mn, Tc, Re). Inorg. Chem. 56, 2448-2458 (2017). https://doi.org/10.1021/acs.inorgchem.6b02503.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3abcfa13-2fb6-4391-8474-c11d7c2a9471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.