PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of potential improvements in the performance of solenoid injectors in diesel engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient fuel injection and exhaust gas cleaning systems are needed to promote the development of high-performance internal combustion systems and decrease greenhouse gas emissions. Electronically controlled injection systems enable nearly unlimited control over system components whose operation is limited by the inertia of moving parts and other physical phenomena. In the present study, a novel technology for manufacturing magnetic cores was proposed to improve the performance of solenoid injectors in Diesel engines. The conducted simulations and experiments revealed that the developed technology can increase the speed of solenoid injectors. In the proposed solution, the fuel dose was split to effectively control the injection process and improve engine performance.
Rocznik
Strony
art. no. 166493
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland
Bibliografia
  • 1. Ando R, Koizumi M, Ishikawa T. Development of a simulation method for dynamic characteristics of fuel injector. IEEE Transactions on Magnetics 2001; 37(5): 3715-3718. https://doi.org/10.1109/20.952697.
  • 2. Аnfilatov А А, Chuvashev A N. Power and fuel efficiency of a diesel engine with separate feed. Journal of Physics: Conference Series 2020; 1515: 042048. https://doi.org/10.1088/1742-6596/1515/4/042048.
  • 3. Bi X, Wang L, Marignetti F, Zhou M. Research on electromagnetic field, eddy current loss and heat transfer in the end region of synchronous condenser with different end structures and material properties. Energies 2021; 14: 4636. https://doi.org/10.3390/en14154636.
  • 4. Bor M, Borowczyk T, Karpiuk W, Smolec R. Determination of the response time of new generation electromagnetic injectors as a function of fuel pressure using the internal photoelectric effect. 2018 International Interdisciplinary PhD Workshop 2018: 17859890. https://doi.org/10.1109/IIPHDW.2018.8388385.
  • 5. Borucka A, Kozłowski E, Oleszczuk P, Świderski A. Predictive analysis of the impact of the time of day on road accidents in Poland. Open Engineering 2021; 11(1): 142-150. https://doi.org/10.1515/eng-2021-0017.
  • 6. Borucka A. Method of testing the readiness of means of transport with the use of semi-Markov processes. Transport 2021; 36(1): 75-83. https://doi.org/10.3846/transport.2021.14370.
  • 7. Chan J H, Vladimirescu A, Gao X C, Liebmann P, Valainis J. Nonlinear transformer model for circuit simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 1991; 10(4): 476–482. https://doi.org/10.1109/43.75630.
  • 8. Coppo M, Dongiovanni C, Negri C. Numerical analysis and experimental investigation of a Common Rail-type diesel injector. Transactions of the ASME 2004; 126: 874-885. https://doi.org/10.1115/1.1787502.
  • 9. Detka K, Górecki K. Analiza przydatności metody histerezowej do wyznaczania strat mocy w rdzeniu ferromagnetycznym. Przegląd Elektrotechniczny 2022; 98(9): 139-142. https://doi.org/10.15199/48.2022.09.30.
  • 10. Dimitriadis A, Seljak T, Vihar R, Baškovič U Ž et al. Improving PM-NOx trade-off with paraffinic fuels: A study towards diesel engine optimization with HVO. Fuel 2020; 265: 116921. https://doi.org/10.1016/j.fuel.2019.116921.
  • 11. Dong Q, Yang X, Ni H et al. An on-line measurement method of injection rate of high pressure common rail system. Measurement 2021; 170: 108716. https://doi.org/10.1016/j.measurement.2020.108716.
  • 12. Duda K, Wierzbicki S, Mikulski M et al. Emissions from a medium-duty CRDI engine fueled with diesel-biodiesel blends. Transport Problems 2021; 16(1): 39-49. https://doi.org/10.21307/tp-2021-004.
  • 13. Hu N, Yang J, Zhou P. Sensitivity analysis of the dynamic response of an electronic fuel injector regarding fuel properties and operating conditions. Applied Thermal Engineering 2018; 129: 709-724. https://doi.org/10.1016/j.applthermaleng.2017.10.071.
  • 14. Huber B, Ulbrich H. Modeling and experimental validation of the solenoid valve of a common rail diesel injector. SAE Technical Paper 2014-01-0195. 2014. https://doi.org/10.4271/2014-01-0195.
  • 15. Jaliliantabar F, Ghobadian B, Carlucci A P et al. A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine. Energy 2020; 194: 116860. https://doi.org/10.1016/j.energy.2019.116860.
  • 16. Kinsler, P. Faraday’s law and magnetic induction: cause and effect, experiment and theory. Physics 2020; 2(2): 148–161. https://doi.org/10.3390/physics2020009.
  • 17. Koch R C, Lynch A F, Chladny R R. Modeling and control of solenoid valves for internal combustion engines. IFAC Proceedings Volumes 2002; 35(2): 197–202. https://doi.org/10.1016/s1474-6670(17)33941-1.
  • 18. Martínez-Martínez S, de la Garza OA, García-Yera M, et al. Hydraulic interactions between injection events using multiple injection strategies and a solenoid diesel injector. Energies 2021; 14: 3087. https://doi.org/10.3390/en14113087.
  • 19. Mikulski M, Ambrosewicz-Walacik M, Duda K, Hunicz J. Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel. Renew Energy 2020; 148: 739–755. https://doi.org/10.1016/j.renene.2019.10.161.
  • 20. Ovaere M, Proost S. Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package. Energy Policy 2022; 168: 113085. https://doi.org/10.1016/j.enpol.2022.113085.
  • 21. Passarini LC, Pinotti M. A new model for Fast-acting electromagnetic fuel injector analysis and design. J. Braz. Soc. Mech. Sci. & Eng. 2003; 25(1). https://doi.org/10.1590/S1678-58782003000100014.
  • 22. Piron M, Sangha P, Reid G et al. Rapid computer-aided design method for fast-acting solenoid actuators. IEEE Transactions on Industry Applications 1999; 35(5): 991-999. https://doi.org/10.1109/28.793358
  • 23. Pratama R H, Huang W, Moon S. Unveiling needle lift dependence on near-nozzle spray dynamics of diesel injector. Fuel 2021; 285: 119088. https://doi.org/10.1016/j.fuel.2020.119088.
  • 24. Santhosh K, Radheshyam G N K, Sanjay P V. Experimental analysis of performance and emission characteristics of CRDI diesel engine fueled with 1-pentanol/diesel blends with EGR technique. Fuel 2020; 267: 117187. https://doi.org/10.1016/j.fuel.2020.117187.
  • 25. Stelmasiak Z, Larisch J, Pielecha J, Pietras D. Particulate matter emission from dual fuel diesel engine fuelled with natural gas. Polish Maritime Research 2017; 24: 96–104. https://doi.org/10.1515/pomr-2017-0055.
  • 26. Stoeck T. Analytical methodology for testing Common Rail fuel injectors in problematic cases. Diagnostyka 2021; 22(2): 47-52. https://doi.org/10.29354/diag/135999.
  • 27. Stoeck T. Methodology for Common Rail fuel injectors testing in case of non-typical faults. Diagnostyka 2020; 21(2): 25-30. https://doi.org/10.29354/diag/122034.
  • 28. Sun Z Y, Li G X, Wang L et al. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump. Energy Conversion and Management 2016; 113: 119–130. https://doi.org/10.1016/j.enconman.2016.01.031.
  • 29. Szpica D. Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors. Measurement 2018; 118: 253-261. https://doi.org/10.1016/j.measurement.2018.01.045.
  • 30. Terzis A, Kirsch M, Vaikuntanathan V, Geppert A, Lamanna G, Weigand B. Splashing characteristics of diesel exhaust fluid (AdBlue) droplets impacting on urea-water solution films. Experimental Thermal and Fluid Science 2019; 102: 152-162. https://doi.org/10.1016/j.expthermflusci.2018.11.002.
  • 31. Tola O J, Obe E S, Obe C T, Anih L U. Finite element analysis of dual stator winding line start permanent magnet synchronous motor. Przegląd Elektrotechniczny 2022; 98(4): 47-52. https://doi.org/10.15199/48.2022.04.11.
  • 32. Vrublevskyi O, Wierzbicki S. Measurement and theoretical analysis of the displacement characteristics of moving components in a solenoid injector in view of wave phenomena. Measurement 2022; 187: 110323. https://doi.org/10.1016/j.measurement.2021.110323.
  • 33. Vrublevskyi O. Modelling of processes in electro-hydraulic valves of an engine’ fuel system. Mechanika 2019; 25(2): 141-148. https://doi.org/10.5755/j01.mech.25.2.22015.
  • 34. Więcławski K, Figlus T, Mączak J, Szczurowski K. Method of fuel injector diagnosis based on analysis of current quantities. Sensors 2022; 22: 6735. https://doi.org/10.3390/s22186735.
  • 35. Wierzbicki S, Śmieja M. Visualization of the parameters and changes of signals controlling the operation of Common Rail injectors. Solid State Phenomena 2014; 210: 136-141. https://doi.org/10.4028/www.scientific.net/SSP.210.136.
  • 36. Zhang H, He J, Li S et al. Effect of biodiesel impurities (K, Na, P) on non-catalytic and catalytic activities of Diesel soot in model DPF regeneration conditions. Fuel Processing Technology 2020; 199: 106293. https://doi.org/10.1016/j.fuproc.2019.106293.
  • 37. Zhao J, Fan L, Liu P et al. Investigation on electromagnetic models of high-speed solenoid valve for common rail injector. Mathematical Problems in Engineering 2017: 9078598. https://doi.org/10.1155/2017/9078598.
  • 38. Zhao J, Yue P, Grekhov L, Ma X. Hold current effects on the power losses of high-speed solenoid valve for common-rail injector. Applied Thermal Engineering 2018; 128: 1579–1587. https://doi.org/10.1016/j.applthermaleng.2017.09.123.
  • 39. Zhao J, Yue P, Grekhov L, Wei K, Ma X. Temperature and frequency dependence of electrical iron effects on electromagnetic characteristics of high-speed solenoid valve for common rail injector. International Journal of Applied Electromagnetics and Mechanics 2019; 60(2): 173–185. https://doi.org/10.3233/jae-180022.
  • 40. Zhao J, Yue P, Wei K. Eddy current effects on the dynamic response of high-speed solenoid valve for common rail injector. International Journal of Applied Electromagnetics and Mechanics 2020; 62(3): 607-618. https://doi.org/10.3233/jae-190047.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ab9cc10-1909-4d4a-a89d-f151971b5f8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.