PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikroplastik w środowisku i jego usuwanie w technologiach oczyszczania wody i ścieków

Identyfikatory
Warianty tytułu
EN
Microplastic in the environment and its removal in water and wastewater treatment technologies
Języki publikacji
PL
Abstrakty
PL
W ciągu ostatnich lat światowa produkcja tworzyw sztucznych szybko się rozwinęła, a powstające z tych tworzyw śmieci stały się jednocześnie jednym z najszybciej rosnących strumieni odpadów komunalnych na świecie. Rozkład tworzyw sztucznych do mikro- i nanodrobin pogłębia dodatkowo problem zanieczyszczenia środowiska tymi materiałami. Ze względu na małą gęstość i mały rozmiar tych cząstek są one łatwo odprowadzane do kanalizacji ściekowej, a następnie do oczyszczalni ścieków, które są ich głównymi odbiorcami przed zrzutem do zbiorników wodnych. Żadna ze stosowanych obecnie technologii oczyszczania ścieków czy uzdatniania wody nie jest przeznaczona do usuwania cząstek tworzyw sztucznych. Efektywność usunięcia mikroplastików z zastosowaniem różnych metod, w tym fizycznych, chemicznych czy biologicznych, daje zróżnicowane wyniki. Najlepsze efekty w zakresie usunięcia mikroplastiku z wody i ścieków uzyskuje się, stosując technologie hybrydowe czy zaawansowane procesy oczyszczania trzeciego stopnia w technologii oczyszczania ścieków.
EN
In recent years, the global production of plastics has developed rapidly, and the waste generated from them has also become one of the fastest growing municipal waste streams in the world. The decomposition of plastics into micro- and nanoparticles additionally aggravates the problem of environmental pollution with these materials. Due to the low density and small size of these particles, they are easily discharged into the sewage system, and then to the wastewater treatment plants, which are their main recipients before discharging them into water reservoirs. Among various wastewater and water treatment technologies that are in use today, none is designed to remove plastic particles. The effectiveness of microplastics removal using a variety of methods, including physical, chemical and biological ones, produces varying results. The best effects in terms of removing microplastics from water and wastewater are achieved by using hybrid technologies or advanced tertiary treatment processes in wastewater treatment technology.
Rocznik
Tom
Strony
38--43
Opis fizyczny
Bibliogr. 59 poz., rys., wykr.
Twórcy
autor
  • Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk
  • Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk
Bibliografia
  • 1. Lubecki, L., Kowalewska, G. (2019). Plastic-derived contaminants in sediments from the coastal zone of the southern Baltic Sea. Marine Pollution Bulletin, 146, 255-262.
  • 2. Plastics Europe 2022, dostęp 15.09.2022 https://www.plasticseurope.org
  • 3. Lebreton, L., & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1).
  • 4. Imhof H., Schmid J., Niessner R., Ivleva N., Laforsch C. (2012). A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, 10, 7, 524-537.
  • 5. Omni calculator, dostęp 12.09.2022 https://www.omnicalculator.com/ecology/plastikowe-smieci
  • 6. Ramasamy, B. S. S., Palanisamy, S. (2021). A review on occurrence, characteristics, toxicology and treatment of nanoplastic waste in the environment. Environmental Science and Pollution Research, 28, 43258-43273.
  • 7. Geyer, R., Jambeck, J. R., Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
  • 8. Green Peace www1, dostęp 10.05.2022 https://www.greenpeace.org/poland/dowiedz-sie/przyroda/plastik/
  • 9. Issac, M. N., Kandasubramanian, B. (2021). Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research, 28(16), 19544-19562.
  • 10. Imhof H., Sigl R., Brauer E., Feyl S., Giesemann P., Klink S., Leupolz K., Löder M., Löschel L., Missun J., Muszynski S., Ramsperger A., Schrank I., Speck S, Steibl S., Trotter B., Winter I., Laforsch C. (2017). Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Marine Pollution Bulletin, 116, pp. 340-347.
  • 11. Chen, G., Feng, Q. Wang, J. (2020). Mini-review of microplastics in the atmosphere and their risks to humans, Science of the Total Environment, 703, 135504.
  • 12. Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H. Wong, M.H. (2020). Source, migration and toxicology of microplastics in soil, Environment International, 137, 105263.
  • 13. Wang, S.M., Chen, H.Z., Zhou, X.W., Tian, Y.Q., Lin, C., Wang, W.L., Zhou, K.W., Zhang, Y.B. Lin, H. (2020a). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environmental Pollution, 264, 114125.
  • 14. Han, M., Niu, X.R., Tang, M., Zhang, B.T., Wang, G.Q., Yue, W.F., Kong, X.L. Zhu, J.Q. (2020). Distribution of microplastics in surface water of the lower Yellow River near estuary, Science of the Total Environment, 707, 135601.
  • 15. Reinold, S., Herrera, A., Stile, N., Saliu, F., Hernandez-Gonzalez, K., Martinez, I., Ortega, Z., Marrero, Z., Lasagni, M., Gomez, M. (2021). An annual study on plastic accumulation in surface water and sediment cores from the coastline of Tenerife (Canary Island, Spain). Marine Pollution Bulletin, 173, 113072.
  • 16. Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Researchearch, 75, 63-82.
  • 17. Lee, Y.K., Murphy, K.R., Hur, J. (2020). Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives, Environmental Science & Technology, 54.
  • 18. Ahmed, M.B., Rahman, M.S., Alom, J., (...), Zhou, J.L. Yoon, M.-H. (2021). Microplastic particles in the aquatic environment: A systematic review, Science of The Total Environment, 775, 145793.
  • 19. Pohl A., Tytła M., Kernert J., Bodzek M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic Water Researchervoir - Comprehensive analysis. Desalination and Water Treatment, 258, 207-222.
  • 20. Li J., Liu H., Chen J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Researchearch, 137, 362e374
  • 21. Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. Avérous, L. (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes, Microbial Biotechnology, 12(3), 544-555.
  • 22. Napper, I.E. Thompson, R.C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions, Marine Pollution Bulletin, 112, 39-45.
  • 23. Kole, P.J., Lohr, A.J., Van Belleghem, F., Ragas, A. (2017). Wear and tear of tyres: a stealthy source of microplastics in the environment, International Journal of Environmental Research and Public Health, 14, 1265.
  • 24. Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H., Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Research,. 155, 255-265.
  • 25. Ngo P., Pramanik B., Shah K., Roychand R. (2019): Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255, 113326.
  • 26. Bodzek M., Pohl A. Możliwości usuwania mikroplastików ze środowiska wodnego z wykorzystaniem procesów membranowych. XV Konferencja Naukowa „Mikrozanieczyszczenia w środowisku człowieka”, Częstochowa, 14-16 września 2022
  • 27. Bodzek M., Pohl A. (2022). Removal of microplastics in unit processes used in water and wastewater treatment: a review. Archives of Environmental Protection - in press
  • 28. Vuori, L., Ollikainen, M. (2022). How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecological Economics 192, 107246.
  • 29. Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink P., Papazissimos, D., Rogers D.L (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environmental Pollution, 218, 1045-1054.
  • 30. Talvitie, J., Mikola, A., Setala, O., Heinonen, M., Koistinen, A. (2017a). How well is microlitter purified from wastewater? - a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Research, 109, 164-172.
  • 31. Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X., Wu, W. (2019). Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies, The Journal of Cleaner Production, 225, 579-586.
  • 32. Lares, M., Ncibi, M.C., Sillanpaa, M., Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Research, 133, 236-246.
  • 33. Nizzetto, L., Futter, M., Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology, 50(20), 10777-10779.
  • 34. Badola, N., Bahuguna, A., Sasson, Y., Chauhan, J.S. (2022). Microplastics removal strategies: A step toward finding the solution, Frontiers of Environmental Science & Engineering, 16(1), 7.
  • 35. Wang, H., Zhang, Y., Wang, C. (2019). Surface modification and selective flotation of waste plastics for effective recycling-a review, Separation and Purification Technology, 226, 75-94.
  • 36. Hidayaturrahman, H., Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process, Marine Pollution Bulletin, 146, 696-702.
  • 37. Talvitie, J., Mikola, A., Koistinen, A., Setälä, O. (2017b). Solutions to microplastic pollution: Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, 123, 401-407.
  • 38. Ersahin, M.E., Ozgun, H., Dereli, R.K., Ozturk, I., Roest, K., van Lier, J.B., (2012). A reviewon dynamic membrane filtration: materials. applications and future perspectives, Bioresource Technology, 122, 196-206.
  • 39. Bodzek, M., Konieczny, K., Rajca, M. (2019). Membranes in water and wastewater disinfection - review, Archives of Environmental Protection, 45(1), 3-18.
  • 40. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D., Rochman, C.M. (2019). Magnetic extraction of microplastics from environmental samples, Environmental Science & Technology Letters, 6, 68-72.
  • 41. Murphy, F., Ewins, C., Carbonnier, F., Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environmental Science & Technology, 50(11), 5800-5808.
  • 42. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S., Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, The Journal of Hazardous Materials, 323, 274-298.
  • 43. Perren, W., Wojtasik, A., Cai, Q (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), 3357-3364.
  • 44. Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S., Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode, The Journal of Hazardous Materials, 399, 123023.
  • 45. Chen, R., Qi, M., Zhang, G. Yi, C. (2018). Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield, IOP Conference Series: Earth and Environmental Science, 113, 012208.
  • 46. Poerio, T., Piacentini, E., Mazzei, R. (2019). Membrane processes for microplastic removal, Molecules, 24, 4148.
  • 47. Xiao, K., Lianga, S., Wanga, X., Chena, C., Huanga, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review, Bioresource Technology, 271, 473-481.
  • 48. Bui, X.T., Nguyen, P.T., Nguyen, V.T., Dao, T.S., Nguyen, P.D. (2020). Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies, Environmental Technology & Innovation, 19, 101013.
  • 49. Wang, Q., Hernández-Crespo, C., Santoni, M., Van Hulle, S., Rousseau, D.P. (2020b). Horizontal subsurface flow constructed wetlands as tertiary treatment: Can they be an efficient barrier for microplastics pollution? Science of the Total Environment., 137785.
  • 50. Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K., Zhou, B., Souissi, S., Lee, S.-J., Lee, J.-S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus), Environmental Science & Technology, 50 (16), 8849-8857.
  • 51. Zhang, X., Chen, J., Li, J. (2020). The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to contaminants association, Chemosphere, 251, 126360.
  • 52. Michielssen M., Michielssen E., Ni J., Duhaime M. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Researchearch & Technology, 6.
  • 53. Kalčíková G., Alič B., Skalar T., Bundschuh M., Žgajnar Gotvajn A. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31.
  • 54. Harrison, J.P., Sapp, M., Schratzberger, M., Osborn, A.M. (2011). Interactions between microorganisms and marine microplastics: A call for research, Marine Technology Society Journal, 45(2), 12-20.
  • 55. Arossa, S., Martin, C., Rossbach, S., Duarte, C.M. (2019). Microplastic removal by Red Sea giant clam (Tridacna maxima), Environmental Pollution, 252, 1257-1266.
  • 56. Dawson, A.L., Kawaguchi, S., King, C.K., Townsend, K.A., King, R., Huston, W.M., Bengtson Nash, S.M. (2018). Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill, Nature Communications, 9(1), 1001.
  • 57. Corona, E., Martin, C., Marasco, R., Duarte, C.M. (2020). Passive and active removal of marine microplastics by a mushroom coral (Danafungia scruposa), Frontiers in Marine Science, 7, 128.
  • 58. Cunha, C., Silva, .L, Paulo, J., Faria, M., Nogueira, N., Cordeiro, N. (2020). Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment. Environmental Pollution, 263, 114385.
  • 59. Chandra, P., Enespa, S.D. (2020). Microplastic degradation by bacteria in aquatic ecosystem. in: Microorganisms for sustainable environment and health. Chowdhary, P., Raj, A., Verma, D. & Akhter Y., (Eds.) Elsevier, 431-467.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ab019e6-53dc-4126-85cc-f504d5915599
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.