PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Środowiskowe aspekty zastosowania chromatografii gazowej do oznaczania pozostałości farmaceutyków w różnych matrycach
Języki publikacji
EN
Abstrakty
EN
This paper aims at presenting the possibilities of applying gas chromatography for the determination of pharmaceutical residues in different matrices. Section one of the study underscores the environmental advantages of employing GC for such analyses. Section two presents the innovative methods for determining pharmaceuticals in the environment. The last section discusses the results of the analysis of the GC and GC-MS market in Poland. According to the literature data, the described methods were applied for the analysis of real samples: wastewaters, surface waters, soil samples. The samples were collected from the Pomerania region and the Gulf of Gdańsk. The pharmaceuticals were determined in various environmental samples. The highest concentrations were found in raw wastewater, medium-in a treated wastewater, and the lowest-in surface water. The most frequently detected pharmaceuticals were: ibuprofen, paracetamol, diclofenac and naproxen, all belonging to NSAIDs. Furthermore, the results of the study of the Polish GC market indicate that a very limited number of entities are currently using chromatographic techniques, and pharmaceutical residues tests are exceptions, mainly due to the lack of the legal requirements in this field and the lack of own laboratories.
PL
W artykule przedstawiono możliwości wykorzystania chromatografii gazowej (GC, GC-MS) do oznaczania pozostałości farmaceutyków w różnych matrycach. W części pierwszej opisano środowiskowe aspekty zastosowania techniki chromatografii gazowej do takich analiz; w części drugiej innowacyjne sposoby oznaczania leków w środowisku; w części trzeciej wyniki analizy rynku w Polsce pod kątem wykorzystania techniki GC i GC-MS do takich badań. Zgodnie z danymi literaturowymi, prezentowane tu metody zostały wykorzystane do analizy próbek rzeczywistych: ścieków, wód powierzchniowych, gleby, pochodzących z Pomorza i Zatoki Gdańskiej. Najwyższe stężenia leków stwierdzono w ściekach surowych, średnich – w ściekach oczyszczonych, a najniższe – w wodach powierzchniowych. Najczęściej wykrywanymi farmaceutykami były leki należące do grupy NLPZ: ibuprofen, paracetamol, diklofenak i naproksen. Wyniki badań polskiego rynku GC wskazują wyraźnie, że nieznaczna liczba podmiotów gospodarczych stosuje obecnie technikę GC do oznaczania leków w różnorodnych matrycach. Dzieje się tak na skutek braku przepisów prawnych w tej dziedzinie oraz braku własnych laboratoriów.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • University of Gdańsk, Poland
autor
  • University of Gdańsk, Poland
  • University of Gdańsk, Poland
  • University of Gdańsk, Poland
autor
  • University of Gdańsk, Poland
Bibliografia
  • [1]. Afonso-Olivares, C., Montesdeoca-Esponda, S., Sosa-Ferrera, Z. & Santana-Rodríguez, J.J. (2016). Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes, Environmental Science and Pollution Research, 23, pp. 24476-24494.
  • [2]. Biswas, D. & Mitra, D. (2013). Green techniques in gas chromatography, In: Green Chromatographic Techniques (pp. 103-212), Springer Netherlands 2013.
  • [3]. Blau, K. & Darbre, A. (1993). Handbook of derivatives for chromatography, New York: Wiley 1993.
  • [4]. Bletsou, A.A., Jeon, J., Hollender, J., Archontaki, E. & Thomaidis, N.S. (2015). Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment, Trends in Analytical Chemistry, 66, pp. 32-44.
  • [5]. Caban, M., Kumirska, J. & Bialk-Bielińska, A. (2015). Current issues in pharmaceutical residues in drinking water, Current Analytical Chemistry, 12, pp. 249-257.
  • [6]. Caban, M., Mioduszewska, K., Stepnowski, P., Kwiatkowski, M. & Kumirska, J. (2013). Dimethyl(3,3,3-trifluoropropyl) silyldiethylamine-A new silylating agent for the derivatization of β-blockers and β-agonists in environmental samples, Analytica Chimica Acta, 782(2012), pp. 75-88. http://doi.org/10.1016/j.aca.2013.04.018
  • [7]. Caban, M., Stepnowski, P., Kwiatkowski, M., Migowska, N. & Kumirska, J. (2011). Determination of β-blockers and β-agonists using gas chromatography and gas chromatography-mass spectrometry-a comparative study of the derivatization step, Journal of Chromatography A, 1218(44), pp. 8110-8122. http://doi.org/10.1016/j.chroma.2011.08.093
  • [8]. Dawod, M., Breadmore, M.C., Guijt, R.M. & Haddad, P.R. (2010). Electrokinetic supercharging-electrospray ionisation-mass spectrometry for separation and on-line preconcentration of hypolipidaemic drugs in water samples, Electrophoresis, 31(7), pp. 1184-1193. http://doi.org/10.1002/elps.200900420
  • [9]. Daughton, C.G. (2016). Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis, Science of the Total Environment, 562, pp. 391-426.
  • [10]. Der Beek, T.A., Weber, F.A., Bergmann, A. Hickmann, S., Ebert, I., Hein, A. & Küster, A. (2016). Pharmaceuticals in the environment-global occurrences and perspectives, Environmental Toxicology and Chemistry, 35(4), pp. 823-835.
  • [11]. Fatta, D., Achilleos, A., Nikolaou, A. & Meriç, S. (2007). Analytical methods for tracing pharmaceutical residues in water and wastewater, Trends in Analytical Chemistry, 26(6), pp. 515-533. http://doi.org/10.1016/j.trac.2007.02.001
  • [12]. Forza, C. (2002). Survey research in operations management: a process-based perspective, International Journal of Operations & Production Management, 22(2), 152. http://doi.org/10.1108/01443570210414310
  • [13]. Gentili, A. (2007). Determination of non-steroidal anti-inflammatory drugs in environmental samples by chromatographic and electrophoretic techniques, Analytical and Bioanalytical Chemistry, 387(4), pp. 1185-1202. http://doi.org/10.1007/s00216-006-0821-7
  • [14]. Görög, S. (2011). Advances in the analysis of steroid hormone drugs in pharmaceuticals and environmental samples (2004-2010), Journal of Pharmaceutical and Biomedical Analysis, 55(4), pp. 728-743. http://doi.org/10.1016/j.jpba.2010.11.011
  • [15]. Heath, E., Kosjek, T., Farre, M., Quintana, J.B., de Alencastro, L.F., Castiglioni, S. & Barcelo, D. (2010). Second interlaboratory exercise on non-steroidal anti-inflammatory drug analysis in environmental aqueous samples, Talanta, 81(4-5), pp. 1189-1196. http://doi.org/10.1016/j.talanta.2010.02.009
  • [16]. Himmelsbach, M., Klampfl, C.W. & Buchberger, W. (2005). Development of an analytical method for the determination of antidepressants in water samples by capillary electrophoresis with electrospray ionization mass spectrometric detection, Journal of Separation Science, 28(14), pp. 1735-1741. http://doi.org/10.1002/jssc.200500157
  • [17]. Jennings, W.G. & Poole, C.F. (2012). Chapter 1-Milestones in the Development of Gas Chromatography, Gas Chromatography, pp. 1-17. http://doi.org/http://dx.doi.org/10.1016/B978-0-12-385540-4.00001-8
  • [18]. Karageorgou, E. & Samanidou, V. (2014). Youden test application in robustness assays during method validation, Journal of Chromatography A, 1353, pp. 131-139.
  • [19]. Kim, S.-C. & Carlson, K. (2005). LC-MS2 for quantifying trace amounts of pharmaceutical compounds in soil and sediment matrices, Trends in Analytical Chemistry, 24(7), pp. 635-644.
  • [20]. Konieczka, P. & Namieśnik, J. (2009). Quality assurance and quality control in the analytical chemical laboratory: a practical approach, CRC Press/Francis and Taylor, Boca Raton, FL, 2009.
  • [21]. Kot-Wasik, A., Dębska, J. & Namieśnik, J. (2007). Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products, TrAC Trends in Analytical Chemistry, 26(6), pp. 557-568. http://doi.org/10.1016/j.trac.2006.11.004
  • [22]. Kumirska, J., Migowska, N., Caban, M., Łukaszewicz, P. & Stepnowski, P. (2015). Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples, The Science of the Total Environment, 508, pp. 498-505. http://doi.org/10.1016/j.scitotenv.2014.12.020
  • [23]. Kumirska, J., Migowska, N., Caban, M., Plenis, A. & Stepnowski, P. (2011). Chemometric analysis for optimizing derivatization in gas chromatography-based procedures, Journal of Chemometrics, 25(12), pp. 636-643. http://doi.org/10.1002/cem.1410
  • [24]. Kumirska, J., Plenis, A., Łukaszewicz, P., Caban, M., Migowska, N., Białk-Bielińska, A., Czerwicka, M. & Stepnowski, P. (2013). Chemometric optimization of derivatization reactions prior to gas chromatography-mass spectrometry analysis, Journal of Chromatography A, 1296, pp. 164-178. http://doi.org/10.1016/j.chroma.2013.04.079
  • [25]. Mohamed, H.M. (2015). Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis, Trends in Analytical Chemistry, 66, pp. 176-192.
  • [26]. Migowska, N., Caban, M., Stepnowski, P. & Kumirska, J. (2012). Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography-mass spectrometry and gas chromatography with electron capture detection, The Science of the Total Environment, 441, pp. 77-88. http://doi.org/10.1016/j.scitotenv.2012.09.043
  • [27]. Naing, N.N., Li, S.F.Y. & Lee, H.K. (2015). Graphene oxide-based dispersive solid-phase extraction combined with in situ derivatization and gas chromatography-mass spectrometry for the determination of acidic pharmaceuticals in water, Journal of Chromatography A, 1426, pp. 69-76. http://doi.org/10.1016/j.chroma.2015.11.070
  • [28]. Núñez, O., Gallart-Ayala, H., Martins, C.P.B. & Lucci, P. (2012). New trends in fast liquid chromatography for food and environmental analysis, Journal of Chromatography A, 1228, pp. 298-323
  • [29]. Omar, T.F.T., Ahmad, A., Aris, A.Z. & Yusoff, F.M. (2016). Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds, TrAC - Trends in Analytical Chemistry, 85, pp. 241-259. http://doi.org/10.1016/j.trac.2016.08.004
  • [30]. Orata, F. (2012). Derivatization reactions and reagents for gas chromatography analysis, Advanced Gas Chromatography - Progress in Agricultural, Biomedical and Industrial Applications, pp. 83-156. http://doi.org/10.5772/33098
  • [31]. Petrović, M., Hernando, M.D., Díaz-Cruz, M.S. & Barceló, D. (2005). Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review, Journal of Chromatography A, 1067, pp. 1-14.
  • [32]. Pinsonneault, A. & Kraemer, K.L. (1993). Survey research methodology in management information systems: an assessment, Journal of Management Information Systems, 10(2), pp. 75-105. http://doi.org/1175042
  • [33]. Primel, E.G, Caldas, S.S. & Escarrone, A.L.V. (2012). Multi-residue analytical methods for the determination of pesticides and PPCPs in water by LC-MS/MS: a review, Central European Journal of Chemistry, 10(3), pp. 876-899.
  • [34]. Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J. & Stepnowski, P. (2016). Bioaccumulation and analytics of pharmaceutical residues in the environment: A review, Journal of Pharmaceutical and Biomedical Analysis, 127, pp. 232-255.
  • [35]. Reemtsma, T. (2001). The use of liquid chromatography-atmospheric pressure ionization-mass spectrometry in water analysis - Part II: Obstacles, Trends in Analytical Chemistry, 20(10), pp. 533-542.
  • [36]. Shaaban, H. & Górecki, T. (2015). Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments, Talanta, 132, pp. 739-752.
  • [37]. Snyder, L.R. & Dolan, J.W. (2013). Milestones in the Development of Liquid Chromatography. Liquid Chromatography: Fundamentals and Instrumentation, Elsevier Inc. 2013, http://doi.org/10.1016/B978-0-12-415807-8.00001-8.
  • [38]. Tadeo, J.L, Sánchez-Brunete, C., Albero, B., García-Valcárcel, A.I. & Pérez, R.A. (2012). Central European Journal of Chemistry, 10(3), pp. 480-520.
  • [39]. Thompson, M., Ellison, S.L.R. & Wood, R. (2000). Harmonized guidelines forsingle-laboratory validation of methods of analysis (IUPAC TechnicalReport), Pure and Applied Chemistry, 74, pp. 835-855.
  • [40]. Ternes, T.A. (2001). Analytical methods for the determination of pharmaceuticals in aqueous environmental samples, Trends in Analytical Chemisty, 20(8), pp. 419-434.
  • [41]. Xie, H.Y. & He, Y.Z. (2010). Green analytical methodologies combining liquid-phase microextraction with capillary electrophoresis, TrAC - Trends in Analytical Chemistry, 29(7), pp. 629-635. http://doi.org/10.1016/j.trac.2010.02.017
  • [42]. Zwiener, C. & Frimmel, F.H. (2004). LC-MS analysis in the aquatic environment and in water treatment technology - a critical review. Part II: Applications for emerging contaminants and related pollutants, microorganisms and humic acids, Analytical and Bioanalytical Chemistry, 378(4), pp. 862-874. http://doi.org/10.1007/s00216-003-2412-1
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3aac72ac-2579-4a47-a397-fa815232e336
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.