PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applications of Savitzky-Golay Filter for Seismic Random Noise Reduction

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article utilizes Savitzky–Golay (SG) filter to eliminate seismic random noise. This is a novel method for seismic random noise reduction in which SG filter adopts piecewise weighted polynomial via leastsquares estimation. Therefore, effective smoothing is achieved in extracting the original signal from noise environment while retaining the shape of the signal as close as possible to the original one. Although there are lots of classical methods such as Wiener filtering and wavelet denoising applied to eliminate seismic random noise, the SG filter outperforms them in approximating the true signal. SG filter will obtain a good tradeoff in waveform smoothing and valid signal preservation under suitable conditions. These are the appropriate window size and the polynomial degree. Through examples from synthetic seismic signals and field seismic data, we demonstrate the good performance of SG filter by comparing it with the Wiener filtering and wavelet denoising methods.
Czasopismo
Rocznik
Strony
101--124
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • College of Electronic Engineering, Xi’an Shiyou University, Xi’an, China
autor
  • College of Electronic Engineering, Xi’an Shiyou University, Xi’an, China
autor
  • College of Communication Engineering, Jilin University, Changchun, China
autor
  • College of Communication Engineering, Jilin University, Changchun, China
autor
  • College of Communication Engineering, Jilin University, Changchun, China
Bibliografia
  • Awal, Md.A., S.S. Mostafa, and M. Ahmad (2011), Performance analysis of Savitzky–Golay smoothing filter using ECG signal, Int. J. Comput. Inf. Technol. 1, 2, 24-29.
  • Bian, J., A. Li, M. Song, L. Ma, and J. Jiang (2010), Reconstruction of NDVI timeseries datasets of MODIS based on Savitzky–Golay filter, J. Remote Sens. 14, 4, 725-741.
  • Bonettini, S., and V. Ruggiero (2011), An alternating extragradient method for total variation-based image restoration from Poisson data, Inverse Probl. 27, 9, 095001, DOI: 10.1088/0266-5611/27/9/095001.
  • Boudraa, A.O., J.C. Cexus, and Z. Saidi (2004), EMD-based signal noise reduction, Int. J. Signal Process. 1, 1, 33-37.
  • Chambolle, A. (2004), An algorithm for total variation minimization and applications, J. Math. Imaging Vis. 20, 1-2, 89-97, DOI: 10.1023/B:JMIV. 0000011325.36760.1e.
  • Chambolle, A., and P.-L. Lions (1997), Image recovery via total variation minimization and related problems, Numer. Math. 76, 2, 167-188, DOI: 10.1007/ s002110050258.
  • Chambolle, A., V. Caselles, D. Cremers, M. Novaga, and T. Pock (2010), An introduction to total variation for image analysis. In: M. Fornasier (ed.), Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Series on Computational and Applied Mathematics, Vol. 9, de Gruyter, Berlin, 263-340,
  • Chan, T., S. Esedoglu, F. Park, and A. Yip (2006), Total variation image restoration: Overview and recent developments. In: N. Paragios, Y. Chen, and O. Faugeras (eds.), Handbook of Mathematical Models in Computer Vision, Springer, New York, 17-32.
  • Chen, D., and L. Cheng (2012), Spatially adapted total variation model to remove multiplicative noise, IEEE Trans. Image Process. 21, 4, 1650-1662, DOI: 10.1109/TIP.2011.2172801.
  • Chen, J., P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh (2004), A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote Sens. Environ. 91, 3-4, 332- 344, DOI: 10.1016/j.rse.2004.03.014.
  • Chen, Z., and J. Shu (2011), Remote sensing image merging based on Savitzky– Golay method, Geogr. Geo-Inf. Sci. 27, 2, 29-33.
  • Člupek, M., P. Matějka, and K. Volka (2007), Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing, J. Raman Spectrosc. 38, 9, 1174-1179, DOI: 10.1002/jrs.1747.
  • Dong, F.F., and Z. Liu (2009), A new gradient fidelity term for avoiding staircasing effect, J. Comput. Sci. Technol. 24, 6, 1162-1170, DOI: 10.1007/s11390- 009-9289-1.
  • Ferahtia, J., K. Baddari, N. Djarfour, and A.K. Kassouri (2010), Incorporation of a non-linear image filtering technique for noise reduction in seismic data, Pure Appl. Geophys. 167, 11, 1389-1404, DOI: 10.1007/s00024-010-0101-5.
  • Gong, C. (2012), Method research of the seismic data denoising based on total variation principle, MSc. Thesis, Chengdu University of Technology, Chengdu, China, 46 pp.
  • Guiñón, J.L., E. Ortega, J. García-Antón, and V. Pérez-Herranz (2007), Moving average and Savitzki–Golay smoothing filters using Mathcad. In: Proc. Int. Conf. on Engineering Education (ICEE 2007), 3-7 September 2007, Coimbra, Portugal.
  • Hargittai, S. (2005), Savitzky–Golay least-squares polynomial filters in ECG signal processing, Comput. Cardiol. 32, 763-766, DOI: 10.1109/CIC.2005. 1588216.
  • Wayt, H.J., and T.R. Khan (2007), Integrated Savitzky–Golay filter from inverse Taylor series approach. In: Proc. 15th Int. Conf. on Digital Signal Processing, 1-4 July 2007, Cardiff, Great Britain, 375-378, DOI: 10.1109/ICDSP. 2007.4288597.
  • Huang, Y.H., J.H. Wang, D. Jiang, and Q. Zhou (2009), Reconstruction of MODISEVI time-series data with S-G filter, Geomat. Inf. Sci. Wuhan Univ. 34, 12, 1440-1444. Li, M., and J. Liu (2011), Reconstructing vegetation temperature condition index based on the Savitzky–Golay filter. In: D. Li, Y. Liu, and Y. Chen (eds.), Computer and Computing Technologies in Agriculture IV, IFIP Advances in Information and Communication Technology, Vol. 346, 629-637, DOI: 10.1007/978-3-642-18354-6_74.
  • Li, X., and N.M. Bilgutay (1993), Wiener filter realization for target detection using group delay statistics, IEEE Trans. Signal Process. 41, 6, 2067-2074, DOI: 10.1109/78.218136.
  • Nie, P. (2012), The study and application of noise suppression method in seismic exploration – Regularization constrained Wiener filter and directional derivative trace transform, Ph.D. Thesis, Jilin University, Jilin, China. O’Haver, T. (2012), An introduction to signal processing with applications in chemical analysis, http://terpconnect.umd.edu/~toh/spectrum/TOC.html, last updated 8 May.
  • O’Haver, T. (2013), A pragmatic introduction to signal processing with applications in chemical analysis, http://terpconnect.umd.edu/~toh/spectrum/TOC.html, last updated 28 July.
  • Qu, Y., J.X. Cao, H.D. Zhu, and C. Ren (2011), An improved total variation technique for seismic image denoising, Acta Petrolei Sin. 32, 815-819.
  • Rudin, L.I., S. Osher, and E. Fatemi (1992) Nonlinear total variation based noise removal algorithms, Physica D 60, 1-4, 259-268, DOI: 10.1016/0167- 2789(92)90242-F.
  • Ruffin, C., and R.L. King (1999), The analysis of hyperspectral data using Savitzky– Golay filtering – Theoretical basis (Part 1). In: Conf. IEEE Int. Geoscience and Remote Sensing Symposium, Hamburg, Germany, 756-758, DOI: 10.1109/IGARSS.1999.774430.
  • Savitzky, A., and M.J.E. Golay (1964), Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36, 8, 1627-1639, DOI: 10.1021/ac60214a047.
  • Schafer, R.W. (2011), What is a Savitzky–Golay filter? IEEE Signal Process. Mag. 28, 4, 111-117, DOI: 10.1109/MSP.2011.941097.
  • Selesnick, I.W., and İ. Bayram (2010), Total variation filtering, OpenStax-CNX module: m31292, http://cnx.org/content/m31292/1.1.
  • Vaiphasa, C. (2006), Consideration of smoothing techniques for hyperspectral remote sensing, ISPRS J. Photogramm. Remote Sens. 60, 2, 91-99, DOI: 10.1016/j.isprsjprs.2005.11.002.
  • Vivó-Truyols, G., and P.J. Schoenmakers (2006), Automatic selection of optimal Savitzky–Golay smoothing, Anal. Chem. 78, 13, 4598-4608, DOI: 10.1021/ ac0600196.
  • Vogel, C.R., and M.E. Oman (1996), Iterative methods for total variation denoising, SIAM J. Sci. Comput. 17, 1, 227-238, DOI: 10.1137/0917016.
  • Xu, J., H. Jiang, L. Xu, L. Jiang, T. Qian, and C. Feng (2011), Pulse wave processing and analysis based on smoothing filter, Chin. J. Sci. Instr. 32, 334-337.
  • Zehtabian, A., and H. Hassanpour (2011), Optimized singular vector denoising approach for speech enhancement, Iran. J. Ener. Environ. 2, 2, 166-180.
  • Zhou, W., and Q. Li (2013), Adaptive total variation regularization based scheme for Poisson noise removal, Math. Method. Appl. Sci. 36, 3, 290-299, DOI: 10.1002/mma.2587.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3aa90422-8cdf-4035-964f-c95fb495ca7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.