PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eulerian three-phase flow model applied to trickle-bed reactors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Eulerowski model przepływu trójfazowego w zastosowaniu do reaktorów strużkowych
Języki publikacji
EN
Abstrakty
EN
The majority of publications and monographs present investigations which concern exclusively twophase flows and particulary the dispersed flows. Therefore, the goal of this study is to develop macroscopic, averaged balances of mass, momentum and energy for systems with three-phase flow. The interphase effects appearing in the conservation equations of the trickle-bed reactor derived (mass, momentum and energy balance) are discussed in detail.
PL
W większości publikacji i monografii prezentowane są badania dotyczące wyłącznie przepływów dwufazowych, a w szczególności przepływów zdyspergowanych, a nie rozdzielonych przepływów faz. Dlatego celem niniejszego opracowania było wyprowadzenie makroskopowych, uśrednionych równań zachowania masy, pędu i energii dla przepływów trójfazowych. Przedyskutowano szczegółowo oddziaływania międzyfazowe, występujące w wyprowadzonych równaniach zachowania dla reaktorów strużkowych.
Twórcy
autor
  • Instytut Inżynierii Chemicznej PAN Gliwice, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] Boemer A., Renz H. Qi, U., Vasquez S., Boysan F., Eulerian computation of fluidized-bed hydrodynamice – a comparison of physical models, ASME FBC Conf. 2. 1995, 775.
  • [2] Boure J.A., Delhaye J.M., In: Handbook of multiphase systems, ed. G. Hetsroni 1982, Section 1, 2 pp. 1-36-1-95 McGraw Hill, New York.
  • [3] Delhaye J.M.,. Achard J.L, On the use of averaging operation in two-phase flow modeling. Thermal and hydraulic aspects of nuclear reactor safety 1: Light Water Reactors, ASME Winter Meeting 1977.
  • [4] Drew D.A., Mathematic modeling of two-phase flow, Ann. Rev. Fluid-Mech., 1983, 15, 261.
  • [5] Gidaspow D., Hydrodynamics of fluidization and heat transfer: supercomputer modeling, Appl. Mech. Rev., 1986, 39, 1.
  • [6] Ishii M., Hibiki T., Thermo-fluid dynamics of two-phase flow, Sec. Ed. Springer, New York 2011.
  • [7] Soo S.L., Multiphase fluid dynamics, Science Press, Gower Technical, New York 1990.
  • [8] Enwald H., Peirano E., Almsted A.E., Eulerian two-phase flow theory applied to fluidization, Int. J. Multiphase Flow,1986, 22, 21.
  • [9] Lyczkowski R.W., The history of multiphase computational fluid dynamics, Ind. Eng. Chem. Res., 2010, 49, 5029.
  • [10] Dudukowic M. P., Larachi F., Mills P.L, Multiphase catalytic reactors: a perspective on concurrent knowledge and future trends, Catalysis Reviews, 2002, 44, 123.
  • [11] Martinez O.M., Casenello M. C., Cukierman A.L., Three-phase fixed bed catalytic reactors, application to hydrotreating processes, Trends in Chem. Eng., 1994, 2.
  • [12] Shah Y.T., Gas-liquid-solid reactor design, Mc Graw Hill, New York 1979.
  • [13] Satterfield C.N., Trickle-bed reactors, AIChE J., 1975, 21, 209.
  • [14] Bartelmus G., Gancarczyk A., Stasiak M., Hydrodynamics of cocurrent fixed-bed three-phase reactors, the effect of physicochemical properties of the liquid on pulse velocity, Chem. Eng. Proc., 1998, 37, 331.
  • [15] Burghardt A., Bartelmus G., Gancarczyk A., Hydrodynamics of pulsing flow in three-phase catalytic reactors, Chem. Eng. Proc., 1999, 38, 441.
  • [16] Whitaker S., Advances in theory of fluid motion in porous media, Ind. Eng. Chem., 1969, 61, 14.
  • [17] Drew D.A., Lahey R.T., In: Particulate two-phase flow, Ch., 1993, 16, 509, Butterworth- Heinemann, Boston.
  • [18] Sherwood T.K., Pigford R.L., Wilke Ch. R., Mass transfer, McGraw-Hill Book Company, New York 1975.
  • [19] Cussler E.L., Diffusion and mass transfer in fluid systems, Cambridge University Press, Cambridge, Second Edition, 1997.
  • [20] Taylor R., Krishna R., Multicomponent mass transfer, John Wiley & Sons, Inc. New York, 1993.
  • [21] Dwivendi P.N., Upadhyah S.N., Particle fluid mass transfer in fixed and fluidized beds, Ind. Eng. Chem. Process Design and Development, 1977, 16, 157.
  • [22] Fukushima S., Kusaka K., Liquid-phase volumetric mass transfer coefficient and boundary of hydrodynamic flow region in packed column with concurrent downflow, Journal of Chemical Engineering of Japan, 1977, 10, 468.
  • [23] Tan C.S., Smith, J.M., Catalyst particle effectiveness with unsymmetric boundary conditions, Chem. Eng. Sci., 1980, 35, 1601.
  • [24] Goto S., Smith J.M., Trickle-bed reactor performance, Part I Holdup and mass transfer effects, AIChE J., 1975, 21, 706.
  • [25] Iliuta I., Larachi F., Grandjean P.B.A., Wild G., Gas-liquid interfacial mass transfer in tricklebed reactors: State of the art correlations, Chem. Eng. Sci., 1999, 54, 5633.
  • [26] Dudukowic M.P., Larachi F., Mills P.L., Gas-solid and gas-liquid mass transfer coefficients, AIChE J., 1996, 42, 269.
  • [27] Al-Dahhan M.H., Dudukovic M.P., Catalyst bed dilution for improving catalyst wetting in laboratory trickle-bed reactors, AIChE J., 1996, 42, 2594.
  • [28] Al-Dahhan M.H., Larachi F., Duduković M.P., Laurent A., High pressure trickle-bed reactors: a review, Ind. Eng Chem. Res., 1997, 36, 3292.
  • [29] Al-Dahhan M.H., Duduković M.P., Pressure drop and liquid holdup in high pressure trickle-bed reactors, Chem. Eng. Sci., 1994, 49 5681.
  • [30] Szlemp A., Janecki D., Bartelmus G., Hydrodynamics of a co-current three-phase solid-bed reactor for foaming systems, Chem. Eng. Sci., 2001, 56, 1111.
  • [31] Wammes W.J.A., Middelkamp J., Huisman W.J., deBaas C.M., Westerterp, K.R., Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures, AIChE J., 1991, 37, 1849.
  • [32] Bartelmus G., Local solid-liquid mass transfer in fixed-bed reactor with concurrent flow, Chem. Eng. Process., 1993, 32, 65.
  • [33] Burghardt A., Bartelmus G., Jaroszyński M., Kołodziej A., Hydrodynamics and mass transfer In a three-phase fixed-bed reactor with concurrent gas-liquid flow, Chem. Eng. J., 1995, 58, 83.
  • [34] Saez A.E., Carbonell R.G., Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds, AIChE J., 1985, 31, 52.
  • [35] Holub R.A., Duduković M.P., Ramachandran P.A., A phenomenological model for pressure drop, liquid holdup and flow regime transition in gas-liquid trickle flow, Chem. Eng. Sci., 1992, 42, 2343.
  • [36] Attou A., Ferschneider G., A two-fluid hydrodynamic model for the transition between trickle and pulse flow in cocurrent gas-liquid packed-bed reactor, Chem. Eng. Sci., 2000, 55, 491.
  • [37] Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemie-Ingenieurwesen (GVC), Editor “VDI Heat Atlas” Springer-Verlag Berlin-Heidelberg 2010.
  • [38] Jackson R., Transport in porous catalysts, Elsevier, Amsterdam 1977.
  • [39] E. Mason A., Malinauskas A. P., Gas transport in porous media, Elsevier, Amsterdam 1983.
  • [40] Burghardt A., Patzek T., Mass and energy transport in porous granular catalysts in multicomponent and multireaction systems, Int. Chem. Eng., 1983, 23, 739.
  • [41] Froment G.F., Bischoff K.B., Chemical Reactor Analysis and Design, John Wiley & Sons, New York 1990.
  • [42] Haynes H.W., jr., An explicit approximation of the effectiveness factor in porous heterogeneous catalyst, Chem. Eng. Sc., 998, 41 412.
  • [43] Burghardt A., Bartelmus G., Chemical Reactors Engineering, PWN Warsaw 2001 in Polish.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a9630d1-b9b5-4590-8b78-8fa15a2e7988
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.