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Abstract. We study the classification schemes for nonoscillatory solutions of a class of
nonlinear two dimensional systems of first order delay dynamic equations on time scales.
Necessary and sufficient conditions are also given in order to show the existence and nonexis-
tence of such solutions and some of our results are new for the discrete case. Examples will
be given to illustrate some of our results.
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1. INTRODUCTION

A number of oscillation and nonoscillation criteria has already been given for special
cases of the system {

x∆(t) = a(t)f(y(t)),
y∆(t) = −b(t)g(x(τ(t))),

(1.1)

where a, b ∈ Crd ([t0,∞)T,R+), τ ∈ Crd ([t0,∞)T, [t0,∞)T) , τ(t) ≤ t, and τ(t) → ∞
as t→∞, f and g are nondecreasing functions such that uf(u) > 0 and ug(u) > 0 for
u 6= 0, see [1, 10, 11]. Motivated by [12] in which τ(t) = t− η, η > 0, our purpose is to
obtain the existence and nonexistence of nonoscillatory solutions of (1.1). So according
to our knowledge, not only we improve the results obtained in [12] but also some of our
results are new for the discrete case. The theory of time scales, which is a closed subset
of real numbers denoted by T, was introduced by Stefan Hilger in his Ph.D. thesis
in 1988 in order not only to unify continuous and discrete analysis but also extend
results for any time scale, see [2] and [3]. Throughout this paper, we assume that T is
unbounded above. We mean by t ≥ t1 that t ∈ [t1,∞)T := [t1,∞) ∩ T. We call (x, y)
a proper solution if it is defined on [t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0
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for t ≥ t0. A solution (x, y) of (1.1) is said to be nonoscillatory if the component
functions x and y are both nonoscillatory, i.e., either eventually positive or eventually
negative. Otherwise, it is said to be oscillatory.

One can easily show that any nonoscillatory solution (x, y) of system (1.1) belongs
to one of the following two classes:

M+ := {(x, y) ∈M : xy > 0 eventually},
M− := {(x, y) ∈M : xy < 0 eventually},

where M be the set of all nonoscillatory solutions of system (1.1).
For convenience, let us set

A(t) =
∞∫
t

a(s)∆s and B(t) =
∞∫
t

b(s)∆s.

The set up of this paper is as follows: In Section 1, we give essential lemmas
which are used in proofs of our main results. In Section 2, we show the existence
of nonoscillatory solutions of system (1.1) in some sub-classes of M+ and M− by
using convergence/divergence of A(t0) and B(t0) for t0 ∈ T and some other improper
integrals. We also give examples in order to highlight our main results. In Section 3,
we show the nonexistence of nonoscillatory solutions of system (1.1) in M+ and M−.
Finally, we end up the paper by a conclusion.

It can be shown as in [1] that component functions x and y are themselves
nonoscillatory if (x, y) is a nonoscillatory solution of system (1.1). In the following
lemmas, we get oscillation and nonoscillation criteria of system (1.1). Since system
(1.1) has been considered without a delay term in [11], we refer the reader to [11] for
some of the proofs we skip here.
Lemma 1.1.
(a) If A(t0) <∞ and B(t0) <∞, then system (1.1) is nonoscillatory.
(b) If A(t0) =∞ and B(t0) =∞, then system (1.1) is oscillatory.
Proof. (a) Suppose that A(t0) <∞ and B(t0) <∞. Choose t1 ∈ [t0,∞)T such that

∞∫
t1

a(t)f

1 + g(2)
∞∫
t

b(s)∆s

∆t < 1.

Let X be the space of all rd-continuous functions on T with the norm ‖x‖ =
supt∈[t1,∞)T |x(t)| and with the usual pointwise ordering ≤. Define a subset Ω of X as

Ω :=
{
x ∈ X : 1 ≤ x(τ(t)) ≤ 2, τ(t) ≥ t1

}
.

For any subset S of Ω, we have that inf S ∈ Ω and supS ∈ Ω. Define an operator
F : Ω→ X such that

(Fx)(t) = 1 +
t∫

t1

a(s)f

1 +
∞∫
s

b(u)g(x(τ(u)))∆u

∆s, τ(t) ≥ t1.
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By using the monotonicity and the fact that x ∈ Ω, we have

1 ≤ (Fx)(t) ≤ 1 +
t∫

t1

a(s)f

1 + g(2)
∞∫
s

b(u)∆u

∆s ≤ 2, τ(t) ≥ t1.

It is also easy to show that F is an increasing mapping. So by the Knaster fixed point
theorem, there exists x̄ ∈ Ω such that Fx̄ = x̄. Then we have

x̄∆(t) = a(t)f

1 +
∞∫
t

b(u)g(x(τ(u)))∆u

 .

Setting

ȳ(t) = 1 +
∞∫
t

b(u)g(x(τ(u)))∆u

gives us
ȳ∆(t) = −b(t)g(x(τ(t))),

i.e., (x, y) is a nonoscillatory solution of (1.1).

Lemma 1.2.

(a) If A(t0) <∞ and B(t0) =∞, then any nonoscillatory solution (x, y) of system
(1.1) belongs to M−, i.e., M+ = ∅.

(b) If A(t0) =∞ and B(t0) <∞, then any nonoscillatory solution (x, y) of system
(1.1) belongs to M+, i.e., M− = ∅.

The following lemma shows the limit behaviors of the component functions x and
y of solution (x, y) of system (1.1).

Lemma 1.3. Let (x, y) be a nonoscillatory solution of system (1.1).

(a) If A(t0) <∞, then the component function x of (x, y) has a finite limit.
(b) If A(t0) =∞ or B(t0) <∞, then the component function y of (x, y) has a finite

limit.

2. EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (1.1) IN M+ AND M−

In this section, we show the existence of nonoscillatory solutions of system (1.1)
by considering convergence/divergence of A(t0) and B(t0). Since the system (1.1) is
oscillatory for the case A(t0) =∞ and B(t0) =∞, we only consider the other three
cases.



654 Özkan Öztürk and Elvan Akın

2.1. THE CASE A(t0) =∞ AND B(t0) <∞

Let (x, y) be a nonoscillatory solution of system (1.1) such that the component function
x of the solution (x, y) is eventually positive. Then by the same discussion in [11],
we have that any nonoscillatory solution of system (1.1) in M+ belongs to one of the
following sub-classes:

M+
B,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
∞,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|y(t)| = d

}
,

M+
∞,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|y(t)| = 0

}
,

where 0 < c <∞ and 0 < d <∞.

Theorem 2.1. M+
B,0 6= ∅ if and only if

∞∫
t0

a(t)f

k ∞∫
t

b(s)∆s

∆t <∞ (2.1)

for some nonzero k.

Proof. Suppose that there exists a solution (x, y) ∈ M+
B,0 such that x(t) > 0,

x(τ(t)) > 0 for t ≥ t0, x(t) → c1 and y(t) → 0 as t → ∞. Since x is eventually
increasing, there exist t1 ≥ t0 and c2 > 0 such that c2 ≤ g(x(τ(t))) for t ≥ t1.
Integrating the second equation from t to ∞ gives us

y(t) =
∞∫
t

b(s)g(x(τ(s)))∆s, t ≥ t1. (2.2)

Also by integrating the first equation from t1 to t, using the monotonicty of g and (2.2),
we have

x(t) ≥
t∫

t1

a(s)f

 ∞∫
s

b(u)g(x(τ(u)))∆u

∆s ≥
t∫

t1

a(s)f

c2 ∞∫
s

b(u)∆u

∆s

Setting c2 = k and taking the limit as t→∞ prove the assertion. (For the case x < 0
eventually, the proof can be shown similarly with k < 0.)

Conversely, suppose that (2.1) holds for some k > 0. (For the case k < 0 can be
shown similarly.) Then choose t1 ≥ t0 so large that

∞∫
t1

a(t)f

k ∞∫
t

b(s)∆s

∆t < c1
2 , t ≥ t1, (2.3)
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where k = g(c1). Let X be the space of all continuous and bounded functions on
[t1,∞)T with the norm ‖y‖ = supt∈[t1,∞)T |y(t)|. Then X is a Banach space, see [4].
Let Ω be the subset of X such that

Ω :=
{
x ∈ X : c1

2 ≤ x(τ(t)) ≤ c1, τ(t) ≥ t1
}
,

and define an operator F : Ω→ X such that

(Fx)(t) = c1 −
∞∫
t

a(s)f

 ∞∫
s

b(u)g(x(τ(u)))∆u

∆s, τ(t) ≥ t1.

It is easy to see that Ω is bounded, convex and a closed subset of X. Now let us show
F has the following properties. F maps into itself. Indeed, we have

c1 ≥ (Fx)(t) ≥ c1 −
∞∫
t

a(s)f

g(c1)
∞∫
s

b(u)∆u

∆s ≥ c1
2 , τ(t) ≥ t1,

by (2.3). In order to show that F is continuous on Ω, let xn be a sequence in Ω such
that xn → x ∈ Ω = Ω̄. Then for τ(t) ≥ t1, we have

|(Fxn)(t)− (Fx)(t)|

≤
∞∫
t1

a(s)

∣∣∣∣∣∣
f
− ∞∫

s

b(u)g(xn(τ(u)))∆u

− f
− ∞∫

s

b(u)g(x(τ(u)))∆u

∣∣∣∣∣∣∆s.
Then the Lebesgue Dominated Convergence theorem and the continuity of g give
‖(Fxn)− (Fx)‖ → 0 as n→∞, i.e., F is continuous on Ω. Finally, we show that FΩ
is precompact. Let x ∈ Ω and s, t ≥ t1. Without loss of generality assume s > t. Then
we have

|(Fx)(s)− (Fx)(t)| ≤
t∫
s

a(u)f

g(c1)
∞∫
u

b(λ)∆λ

∆u < ε, τ(t) ≥ t1,

by assumption, which implies that FΩ is relatively compact. Then by the Schauder
Fixed point theorem, there exists x̄ ∈ Ω such that x̄ = Fx̄. So as t → ∞, we have
x̄(t)→ c1 > 0. Setting

ȳ(t) =
∞∫
t

b(u)g(x̄(τ(u)))∆u > 0, τ(t) ≥ t1,

gives that ȳ(t)→ 0 as t→∞, i.e., M+
B,0 6= ∅.
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Example 2.2. Let T = 2N0 , τ(t) = t
4 , t = 2n, s = 2m, m,n ≥ 2, a(t) = 1

2t
4
5
,

b(t) = 3
4t2(8t−4) , f(u) = u

3
5 , k = 1 and g(u) = u. First we need to show A(t0) = ∞

and B(t0) <∞. Indeed,
t∫

t0

a(s)∆s = 1
2

∑
s∈[4,t)2N0

s
1
5 .

So we have that

A(t0) = 1
2 lim
n→∞

n−1∑
m=2

(2m) 1
5 =∞.

Since
t∫

t0

b(s)∆s ≤ 3
16

∑
s∈[4,t)2N0

1
s
,

we have

B(t0) ≤ 3
16 lim

n→∞

n−1∑
m=2

1
2m <∞

by the geometric series. Note that we have
T∫
t

b(s)∆s ≤ 3
16

∑
s∈[t,T )2N0

1
s
.

So this implies that

B(t) ≤ 3
16 lim

n→∞

n−1∑
m=2

1
2m = 3

8 lim
n→∞

(
1
t
− 1
t2n

)
= 3

8t .

Letting k = 1 and using the last inequality give us
T∫
t0

a(t)f

k ∞∫
t

b(s)∆s

∆t ≤
T∫
t0

1
2t 4

5

(
3
8t

) 3
5

∆t =
(

3
8

) 3
5 1

2
∑

t∈[1,T )2N0

1
t

2
5
.

Therefore, we have that
∞∫
t0

a(t)f

k ∞∫
t

b(s)∆s

∆t ≤
(

3
8

) 3
5 1

2

∞∑
n=0

1
2 2n

5
<∞

by the geometric series. One can also show that (x, y) =
(
8− 1

t ,
1
t2

)
is a nonoscillatory

solution of 
∆2x(t) = 1

2t 4
5

(y(t))
3
5 ,

∆2y(t) = − 3
4t2(8t− 4)x

( t
4

) (2.4)

such that x(t)→ 8 and y(t)→ 0 as t→∞, i.e., M+
B,0 6= ∅ by Theorem 2.1.



On nonoscillatory solutions of two dimensional nonlinear delay dynamical systems 657

When the case A(t0) =∞ and B(t0) <∞ holds, it can be shown that M+
B,∞ 6= ∅

with τ(t) = t− η for η ≥ 0, see [12].

2.2. THE CASE A(t0) <∞ AND B(t0) <∞

Since the component functions x and y have finite limits by Lemma 1.3, there can
only exist two subclasses in M+ by the same discussion in [11]:

M+
B,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
B,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
,

where 0 < c <∞ and 0 < d <∞. Because the existence of nonoscillatory solutions
in M+

B,0 is shown in the previous subsection, we only prove it for M+
B,B .

Theorem 2.3. M+
B,B 6= ∅ if and only if

∞∫
t0

a(s)f

d1 + k

∞∫
s

b(u)∆u

∆s <∞ (2.5)

for some k 6= 0 and d1 6= 0.

Proof. Suppose that there exists a nonoscillatory solution (x, y) ∈ M+
B,B such that

x > 0 eventually, x(t)→ c1 and y(t)→ d1 as t→∞. (For the case x < 0 eventually,
the proof can be shown similarly.) Since x is eventually positive and increasing, there
exist a large t1 ≥ t0 and c2 > 0 such that c2 ≤ x(τ(t)) ≤ c1 for t ≥ t1. Integrating the
second equation from t to ∞ and the monotonicity of g give

y(t) ≥ d1 + g(c2)
∞∫
t

b(s)∆s, t ≥ t1. (2.6)

Integrating also the first equation from t1 to t and using the monotonicity of f yield us

x(t) ≥
t∫

t1

a(s)f

d1 + g(c2)
∞∫
s

b(τ)∆τ

∆s.

So as t→∞, the assertion follows for k = g(c2).
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Conversely, suppose (2.5) holds. Choose t1 ≥ t0, k > 0 and d1 > 0 such that
∞∫
t1

a(s)f

d1 + k

∞∫
s

b(u)∆u

∆s < d1, (2.7)

where k = g(2d1). (The case k, d1 < 0 can be done similarly.) LetX be the Banach space
of all continuous real valued functions endowed with the norm ‖x‖ = supt∈[t1,∞)T |x(t)|
and with usual pointwise ordering ≤. Define a subset Ω of X as

Ω := {x ∈ X : d1 ≤ x(τ(t)) ≤ 2d1, τ(t) ≥ t1}.

For any subset B of Ω, it is clear that inf B ∈ Ω and supB ∈ Ω. Let us define
an operator F : Ω→ X as

(Fx)(t) = d1 +
t∫

t1

a(s)f

d1 +
∞∫
s

b(u)g(x(τ(u)))∆u

∆s, τ(t) ≥ t1.

It is obvious that F is an increasing mapping into itself. Indeed, we have

d1 ≤ (Fx)(t) ≤ d1 +
t∫

t1

a(s)f

d1 + g(2d1)
∞∫
s

b(u)∆u

∆s ≤ 2d1, τ(t) ≥ t1.

Then by the Knaster fixed point theorem, there exists x̄ ∈ Ω such that x̄ = Fx̄.
By setting

ȳ(t) = d1 +
∞∫
t

b(u)g(x(τ(u))), τ(t) ≥ t1,

we have
ȳ∆(t) = −b(t)g(x(τ(t))).

Therefore, we have x̄(t) → α and ȳ(t) → d1 as t → ∞, where 0 < α < ∞, i.e.,
M+
B,B 6= ∅. Note that a similar proof can be done for the case k < 0 and d1 < 0 with

x < 0.

Example 2.4. Let T = 2N0 , τ(t) = t
4 , t = 2n, s = 2m, n ≥ 2, a(t) = 2

2t
5
3 (3t+1)

1
3
,

b(t) = 1
2t(6t−4) , f(u) = u

1
3 and g(u) = u. We first show A(t0) <∞ and B(t0) <∞.

t∫
t0

a(s)∆s = 1
2

∑
s∈[4,t)2N0

1
s

2
3 (3s+ 1) 1

3
.

So we have that

A(t0) = 1
2 lim
n→∞

n−1∑
m=2

1
(2m) 2

3 (3 · 2m + 1) 1
3
<∞
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by the Ratio test. Similarly,

t∫
t0

b(s)∆s = 1
2

∑
s∈[4,t)2N0

1
6s− 4 .

Hence, as t→∞, we have that

B(t0) = 1
2 lim
n→∞

n−1∑
m=2

1
6 · 2m − 4 <∞.

Since A(t0) < ∞ and B(t0) < ∞, it is easy to show that (2.5) holds. One can also
show that

(
6− 1

t , 3 + 1
t

)
is a nonoscillatory solution of∆2x(t) = 2

2t
5
3 (3t+1)

1
3

(
3 + 1

t

) 1
3 ,

∆2y(t) = − 1
2t(6t−4)

(
6− 4

t

) (2.8)

such that x(t)→ 6 and y(t)→ 3 as t→∞, i.e., M+
B,B 6= ∅ by Theorem 2.3.

2.3. THE CASE A(t0) <∞ AND B(t0) =∞

By the similar argument in [11], we have that any nonoscillatory solution of system
(1.1) in M− belongs to one of the following sub-classes:

M−0,B =
{

(x, y) ∈M− : lim
t→∞

|x(t)| = 0, lim
t→∞

|y(t)| = d
}
,

M−B,B =
{

(x, y) ∈M− : lim
t→∞

|x(t)| = c, lim
t→∞

|y(t)| = d
}
,

M−0,∞ =
{

(x, y) ∈M− : lim
t→∞

|x(t)| = 0, lim
t→∞

|y(t)| =∞
}
,

M−B,∞ =
{

(x, y) ∈M− : lim
t→∞

|x(t)| = c, lim
t→∞

|y(t)| =∞
}
,

where 0 < c <∞ and 0 < d <∞.

Theorem 2.5. M−B,∞ 6= ∅ if and only if

∞∫
t0

a(s)f

k s∫
t0

b(u)∆u

∆s <∞ (2.9)

for some k 6= 0, where f is an odd function.

Proof. Suppose that there exists a nonoscillatory solution (x, y) ∈ M−B,∞ such that
x(t) > 0, x(τ(t)) > 0, t ≥ t1, x(t)→ c2 and y(t)→ −∞ as t→∞, where 0 < c2 <∞.
Since x is monotonic and has a finite limit, there exist t2 ≥ t1 and c3 > 0 such that

c2 ≤ x(τ(t)) ≤ c3 for t ≥ t2. (2.10)
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Integrating the first equation from t2 to t gives us

c2 ≤ x(t) = x(t1) +
t∫

t1

a(s)f(y(s))∆s ≤ c3, t ≥ t2.

So by taking the limit as t→∞, we have
∞∫
t2

a(s)|f(y(s))|∆s <∞. (2.11)

The monotonicity of g, (2.10) and integrating the second equation from t2 to t yield us

y(t) ≤ y(t2)− g(c2)
t∫

t2

b(s)∆s ≤ −g(c2)
t∫

t2

b(s)∆s.

Since f(−u) = −f(u) for u 6= 0 and by the monotonicity of f , we have

|f(y(t))| ≥ f

g(c2)
t∫

t2

b(s)∆s

 , t ≥ t2. (2.12)

By (2.11) and (2.12), we have
t∫

t2

a(s)|f(y(s))|∆s ≥
t∫

t2

a(s)f

g(c2)
s∫

t2

b(u)∆u

∆s.

As t→∞, the assertion follows by setting g(c2) = k. (The case x < 0 eventually can
be proved similarly with k < 0.)

Conversely, without loss of generality suppose that (2.9) holds for some k > 0.
(The case k < 0 can be done similarly.) Then we can choose t1 ≥ t0 and d > 0 such
that

∞∫
t1

a(s)f

k s∫
t1

b(u)∆u

∆s < d, τ(t) ≥ t1, (2.13)

where k = g(2d). Let X be the partially ordered Banach space of all real-valued
continuous functions endowed with supremum norm ‖x‖ = supt∈[t1,∞)T |x(t)| and with
the usual pointwise ordering ≤. Define a subset Ω of X such that

Ω := {x ∈ X : d ≤ x(τ(t)) ≤ 2d, τ(t) ≥ t1}. (2.14)

For any subset B of Ω, inf B ∈ Ω and supB ∈ Ω, i.e., (Ω,≤) is complete. Define
an operator F : Ω→ X as

(Fx)(t) = d+
∞∫
t

a(s)f

 s∫
t1

b(u)g(x(τ(u)))∆u

∆s, τ(t) ≥ t1. (2.15)
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First we need to show that F : Ω→ Ω is an increasing mapping into itself. It is obvious
that it is an increasing mapping and since

d ≤ (Fx)(t) = d+
∞∫
t

a(s)f

 s∫
t1

b(u)g(x(τ(u)))∆u

∆s ≤ 2d

by (2.13), it follows that F : Ω→ Ω. Then by the Knaster fixed point theorem, there
exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) = d+
∞∫
t

a(s)f

 s∫
t1

b(u)g(x̄(τ(u)))∆u

∆s, τ(t) ≥ t1. (2.16)

By taking the derivative of (2.16) and the fact that f is an odd function, we have

x̄∆(t) = a(t)f

− t∫
t1

b(u)g(x̄(τ(u)))∆u

 , τ(t) ≥ t1.

Setting ȳ = −
t∫

t1

b(u)g(x̄(τ(u)))∆u and using the monotonicity of g give

ȳ(t) ≤ −g(d)
t∫

t1

b(u)∆u, τ(t) ≥ t1.

So we have that x̄(t) > 0 and ȳ(t) < 0 for t ≥ t1, and x̄(t) → d and ȳ(t) → −∞ as
t→∞. This completes the proof.

Example 2.6. Let T = 2N0 , τ(t) = t
4 , t = 2n, s = 2m, m,n ≥ 2, k = 1,

a(t) = 1
2t

7
5 (t2+1)

3
5
, b(t) = 2t2−1

2t
9
5 (3t+4)

1
5
, f(u) = u

3
5 and g(u) = u

1
5 . One can easily

show A(t0) <∞ and B(t0) =∞. So let us show (2.9) holds. First we have
s∫

t0

b(u)∆u = 1
2

∑
u∈[4,s)2N0

2u2 − 1
u

4
5 (3u+ 4) 1

5
≤

∑
u∈[1,s)2N0

u = s− 1.

Hence, we have

∞∫
t0

a(s)f

k s∫
t0

b(u)∆u

∆s ≤
T∫
t0

1
2s 7

5 (s2 + 1) 3
5

(s− 1) 3
5 ∆s

= 1
2

∑
s∈[4,T )2N0

(s− 1) 3
5

s
2
5 (s2 + 1)) 3

5
≤

∑
s∈[4,T )2N0

1
s
.
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Since

lim
T→∞

∑
s∈[4,T )2N0

1
s

=
∞∑
m=2

1
2m <∞,

we have that (2.9) holds as T → ∞. It can also be shown that (3 + 1
t ,−t −

1
t ) is

a nonoscillatory solution of
∆2x(t) = 1

2t
7
5 (t2+1)

3
5

(y(t)) 3
5 ,

∆2y(t) = − 2t2−1
2t

9
5 (3t+4)

1
5

(
x
(
t
4

)) 1
5 (2.17)

such that x(t)→ 3 and y(t)→ −∞ as t→∞, i.e., M−B,∞ 6= ∅ by Theorem 2.5.

3. NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF (1.1)
IN M+ AND M−

The nonexistence of nonoscillatory solutions of system (1.1) inM+
B,B ,M

+
B,0 andM−B,∞

directly follows from Theorems 2.1, 2.3 and 2.5, respectively. Hence, we only focus on
M+
∞,B , M

+
∞,0, M

−
0,B , M

−
B,B and M−0,∞.

3.1. THE CASE A(t0) =∞ AND B(t0) <∞

Theorem 3.1. If
∞∫
t0

b(s)g

c1 τ(s)∫
t0

a(u)∆u

∆s =∞ (3.1)

for some nonzero c1, then M+
∞,B = ∅.

Proof. Assume that there exists a solution (x, y) ∈M+
∞,B of (1.1) such that x(t) > 0,

x(τ(t)) > 0, y(t) > 0 for t ≥ t0, x(t)→∞ and y(t)→ d1 as t→∞, where 0 < d1 <∞.
Since y(t) > 0 and decreasing for t ≥ t0, there exists t1 ≥ t0 and d2 > 0 such that
d1 ≤ y(t) ≤ d2 for t ≥ t1. Integrating the first equation from t1 to τ(t) gives

x(τ(t)) ≥ f(d1)
τ(t)∫
t1

a(s)∆s. (3.2)

By integrating the second equation form t1 to t and using (3.2) yield us

y(t1) ≥
t∫

t1

b(s)g(x(τ(s)))∆s ≥
t∫

t1

b(s)g

c1 τ(s)∫
t1

a(u)∆u

∆s, t ≥ t1,

where c1 = f(d1). As t → ∞, we have a contradiction to (3.1). The proof can be
shown similarly when x < 0 eventually with c1 < 0.
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Theorem 3.2. If
∞∫
t0

a(t)f

 ∞∫
t

b(s)g

c1 s∫
t0

a(u)∆u

∆s

∆t <∞ (3.3)

for some c1 6= 0, then M+
∞,0 = ∅.

Proof. Proof is by contradiction. So assume that there exists a nonoscillatory solution
in M+

∞,0 such that x(t) > 0, x(τ(t)) > 0, y(t) > 0 for t ≥ t0, x(t)→∞ and y(t)→ 0
as t→∞. Integrating the second equation from t to ∞ gives

y(t) =
∞∫
t

b(s)g(x(τ(s)))∆s. (3.4)

Since y is eventually decreasing, there exist t1 ≥ t0 and d1 > 0 such that f(y(t)) ≤ d1
for t ≥ t1. Then by integrating the first equation from t1 to t and the monotonicity of
x and f , we have that

x(τ(t)) ≤ x(t) ≤ x(t1) + d1

t∫
t1

a(s)∆s ≤ c1
t∫

t1

a(s)∆s, t ≥ t1, (3.5)

where c1 = 1+max{x(t1), d1}. Integrating the first equation from t1 to t, monotonicity
of f and g, (3.4) and (3.5) give us

x(t) ≤ x(t1) +
t∫

t1

a(s)f

 ∞∫
s

b(u)g

c1 u∫
t1

a(λ)∆λ

∆u

∆s.

As t → ∞, we have a contradiction to x(t) → ∞. The proof can be done similarly
when x < 0 eventually with c1 < 0.

3.2. THE CASE A(t0) <∞ AND B(t0) =∞

Theorem 3.3. If
∞∫
t0

b(t)g

c1 ∞∫
t

a(s)∆s

∆t =∞ (3.6)

for some c1 6= 0, then M−0,B = ∅.

Proof. Proof is by contradiction. So assume that there exists a solution (x, y) ∈M−0,B
such that x(t) > 0, x(τ(t)) > 0, y(t) < 0 for t ≥ t0, x(t) → 0 and y(t) → −d as
t→∞, where d > 0. By integrating the first equation of system (1.1) and using the
monotonicity of x, y and f , we have that there exist c1 > 0 and t1 ≥ t0 such that

x(τ(t)) ≥ x(t) ≥ c1
∞∫
t

a(s)∆(s), t ≥ t1. (3.7)
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By integrating the second equation from t1 to t, using inequality (3.7) and the
monotonicity of g, we have

y(t) = y(t0)−
t∫

t0

b(s)g(x(τ(s)))∆s ≤ −
t∫

t0

b(s)g

c1 ∞∫
s

a(τ)∆τ

∆s.

So as t→∞, we have a contradiction to (3.6). For the case x < 0 eventually, the proof
can be shown similarly with c1 < 0.

Theorem 3.4. If
∞∫
t0

b(t)g

c1 − d1

∞∫
t

a(s)∆s

 =∞ (3.8)

for some c1 > 0 and d1 < 0 (or c1 < 0 and d1 > 0), then M−B,B = ∅.

Proof. Proof is by contradiction. Hence, assume that there exists a nonoscillatory
solution (x, y) ∈ M−B,B such that x(t) > 0, x(τ(t)) > 0, y(t) < 0 for t ≥ t0,
limt→∞ x(t) = c1 > 0 and limt→∞ y(t) = d1 < 0. Since y is decreasing, there exists
d2 < 0 and t1 ≥ t0 such that f(y(t)) ≤ d2 for t ≥ t1. Integrating the first equation
from t to ∞ and the monotonicity of x yield us

x(τ(t)) ≥ x(t) = c1 −
∞∫
t

a(s)f(y(s))∆s ≥ c1 − d2

∞∫
t

a(s)∆s, t ≥ t1. (3.9)

By integrating the second equation from t1 to t and using (3.9), we have

y(t) ≤ −
t∫

t1

b(s)g(x(τ(s)))∆s ≤ −
t∫

t1

b(s)g

c1 − d2

∞∫
s

a(u)∆u

∆s,

where d2 = d1 < 0 and taking the limit of the last inequality as t → ∞, we have
a contradiction to (3.8). This completes the proof. Note that the case x < 0 eventually
can be done similarly with c1 < 0 and d1 > 0.

Theorem 3.5. Suppose that f is an odd function. If

∞∫
t0

a(s)f

 s∫
t1

b(u)g

c1 ∞∫
u

a(λ)∆λ

∆u

∆s =∞ (3.10)

for some c1 6= 0, then M−0,∞ = ∅.

Proof. Proof is by contradiction. So assume that there exists a nonoscillatory solution
(x, y) ∈ M−0,∞ such that x(t) > 0, x(τ(t)) > 0, y(t) < 0 for t ≥ t0, x(t) → 0 and
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y(t)→ −∞ as t→∞. Inequality (3.7) and the monotonicity of g yield us that there
exists c1 > 0 and t1 ≥ t0 such that

g(x(τ(t))) ≥ g(x(t)) ≥ g

c1 ∞∫
t

a(s)∆s

 , t ≥ t1. (3.11)

Integrating the second equation of system (1.1) from t1 to t and using (3.11) yield us

y(t) ≤ −
t∫

t1

b(s)g

c1 ∞∫
s

a(u)∆u

∆s, t ≥ t1. (3.12)

By integrating the first equation of system (1.1) from t1 to t, (3.12) and the fact that
f is an odd function, we have

x(t1) ≥ x(t1)− x(t) ≥
t∫

t1

a(s)

 s∫
t1

b(u)g

c1 ∞∫
u

a(λ)∆λ

∆u

∆s, t ≥ t1.

Taking the limit of the last inequality as t → ∞, we have a contradiction to (3.10).
For the case x < 0, the proof can be shown similarly with c1 < 0.

4. CONCLUSION

In this section, we reconsider (1.1), where τ(t) = t, namely,{
x∆(t) = a(t)f(y(t)),
y∆(t) = −b(t)g(x(t)),

(4.1)

and investigate the asymptotic properties of nonoscillatory solutions for (4.1). Since
the existence and nonexistence of nonoscillatory solutions of (4.1) inM− are considered
in [11], we only focus on M+. Notice that the results that are obtained for system (1.1)
in Sections 2 and 3 also hold for system (4.1). Therefore, we only show the existence of
nonoscillatory solutions for (4.1) in M+

∞,B and M+
∞,0, that are not acquired for (1.1).

In order to do that, we assume A(t0) =∞ and B(t0) <∞ throughout this section.

Theorem 4.1. M+
∞,B 6= ∅ if and only if

∞∫
t0

b(s)g

c1 s∫
t0

a(u)∆u

∆s <∞ (4.2)

for some c1 6= 0.
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Proof. The necessity directly follows from Theorem 3.1. So for suffiency, suppose that
(4.2) holds. Choose t1 ≥ t0, c1 > 0 and d1 > 0 such that

∞∫
t1

b(s)g

c1 s∫
t1

b(u)∆u

∆s < d1, t ≥ t1, (4.3)

where c1 = f(2d1) > 0. (The case c1 < 0 can be done similarly.) Let X be the partially
ordered Banach space of all real-valued continuous functions endowed with supremum
norm

‖x‖ = sup
t∈[t1,∞)T

|x(t)|∫ t
t1
a(s)∆s

and with the usual pointwise ordering ≤. Define a subset Ω of X such that

Ω :=
{
x ∈ X : f(d1)

t∫
t1

a(s)∆s ≤ x(t) ≤ f(2d1)
t∫

t1

a(s)∆s, t ≥ t1
}
. (4.4)

For any subset B of Ω, inf B ∈ Ω and supB ∈ Ω, i.e., (Ω,≤) is complete. Define an
operator F : Ω→ X as

(Fx)(t) =
t∫

t1

a(s)f

d1 +
∞∫
t

b(u)g(x(u))∆u

∆s, t ≥ t1. (4.5)

First we need to show that F : Ω→ Ω is an increasing mapping into itself. It is obvious
that it is an increasing mapping. So let us show F := Ω→ Ω.

f(d1)
t∫

t1

a(s)∆s ≤ (Fx)(t)

≤
t∫

t1

a(s)f

d1 +
∞∫
s

b(u)g

f(2d1)
u∫

t1

a(λ)∆λ

∆u

∆s

≤ f(2d1)
t∫

t1

a(s)∆s

by (4.3). Then by the Knaster fixed point theorem, there exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) =
t∫

t1

a(s)f

d1 +
∞∫
s

b(u)g(x̄(u))∆u

∆s, t ≥ t1. (4.6)

By taking the derivative of (4.6)

x̄∆(t) = a(t)f

d1 +
∞∫
t

b(u)g(x̄(u))∆u

 , t ≥ t1.
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Setting

ȳ(t) = d1 +
∞∫
t

b(u)g(x̄(u))∆u

and taking the limit as t → ∞, we have that x̄(t) > 0 and ȳ(t) > 0 for t ≥ t1, and
x̄(t)→∞ and ȳ(t)→ d1 > 0 as t→∞, i.e., M+

∞,B 6= ∅.

Theorem 4.2. If

∞∫
t0

a(t)f

k ∞∫
t

b(s)∆s

∆t =∞ (−∞)

and
∞∫
t0

b(t)g

l ∞∫
t0

a(s)∆s

∆t <∞

for any k > 0 and some l > 0 (k < 0 and l < 0), then M+
∞,0 6= ∅.

Proof. Choose t1 ≥ t0 and c1 > 0 such that

∞∫
t1

b(t)g

l t∫
t0

a(s)∆s

∆t < c1
2 , t ≥ t1, (4.7)

where l = f(c1). Let X be the partially ordered Banach space of all real-valued
continuous functions endowed with the norm ‖y‖ = supt∈[t1,∞)T |y(t)| and with the
usual pointwise ordering ≤. Define a subset Ω of X such that

Ω =:
{
y ∈ X : g(1)

∞∫
t

b(s)∆s ≤ y(t) ≤ c1
2 , t ≥ t1

}
.

It is clear that (Ω,≤) is complete. Define an operator F : Ω→ X such that

(Fy)(t) =
∞∫
t

b(s)g

 s∫
t1

a(u)f(y(u))∆u

∆s.

It is clear that F is an increasing mapping. We also need to show that F : Ω → Ω.
By (4.7) and the monotonicity of g, we have

(Fy)(t) ≤
∞∫
t

b(s)g

l s∫
t1

a(u)∆u

∆s ≤ c1
2
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for y ∈ Ω. Since
t∫

t2

a(s)f

k ∞∫
s

b(u)∆u

∆s > 1

there exists t2 ≥ t1 such that

t∫
t2

a(s)f

k ∞∫
s

b(u)∆u

∆s > 1

for t ≥ t2 and any k > 0. So by setting k = g(1), we have

(Fy)(t) ≥
∞∫
t

b(s)g

 s∫
t1

a(u)f

g(1)
∞∫
u

b(λ)∆λ

∆u

∆s ≥ g(1)
∞∫
t

a(s)∆s,

for t ≥ t2. Then by the Knaster fixed point theorem, there exists ȳ ∈ Ω such that
ȳ = F ȳ. Then we have

ȳ∆(t) = −b(t)g

 t∫
t1

a(u)f(ȳ(u))∆u

 .

Setting

x̄(t) =
t∫

t1

a(u)f(x̄(u))∆u

and taking the limit as t → ∞ give us that x̄ → ∞ and ȳ → 0, i.e., M+
∞,0 6= ∅.

The case k < 0 and l < 0 with x < 0 can be shown similarly.
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