PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen Permeation Characteristics of PET Liners Used for Type IV High Pressure Hydrogen Tanks

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydrogen gas permeation through polymer materials is due to two different mechanisms : molecular and atomic diffusion. Indeed, this overall gas diffusion is strongly affected by the microstructural composition of the material, the production process, and also the experimental conditions. Consequently, the hydrogen permeation parameters, when available in the literature, are changing and unreliable. The need of an accurate knowledge of these parameters for a specific polymer, after complete process, leads us to design an experimental apparatus based on the manometric method and its corresponding numerical model. From initial approximate values roughly deduced from a first experiment, the numerical model implemented in Matlab language, allows a refining of the parameters, by fitting the simulated values to the experimental ones on successive experiments. These experiments are carried out on a sample with increasing upstream pressures from 25 bar up to 150 bar. Because of the high pressure values, the beginning of permeation experiments are affected by the gas flow disturbance due to the sharp pressure rising. Considering this delay time induced by the pressure increase, the permeation parameters are evaluated more accurately. In fact, with a single experiment the phenomenon cannot be readily separated from the so-called time-lag parameter occurring in gas diffusion through a material.
Rocznik
Strony
85--97
Opis fizyczny
Bibliogr. 17 poz., il., wykr.
Twórcy
autor
  • FEMTO ST University of Franche-Comte, Besancon, France
autor
  • FEMTO ST University of Franche-Comte, Besancon, France
autor
  • FEMTO ST University of Franche-Comte, Besancon, France
autor
  • FEMTO ST University of Franche-Comte, Besancon, France
Bibliografia
  • 1. Vieth W.R., 1991, Diffusion in and through polymers : principles and applications, Oxford University Press, Oxford, 1991.
  • 2. Rogers, C.E. 1985, Permeations of Gases and Vapours in Polymers, Polymer Permeability, Comyn, J. (ed.), Elsevier Applied Science, p 11-73, 1985
  • 3. Frisch H.L., 1957, The Time Lag in Diffusion, Journal of Physical Chemistry, 61, p. 93-95, 1957.
  • 4. Petropoulos, J. H., 1988, On the dual mode gas transport model for glassy polymers Journal of Polymer Science Part B: Polymer Physics, Vol. 26, Issue 5, p. 1009-1020, 1988.
  • 5. Crank J., 1975, The mathematics of diffusion, 2nd edition, Clarendon Press-Oxford, 1975.
  • 6. Rodrigo Correa C., Klein A., 1990, Measurement of permeability, diffusion and solubility coefficients, A testing method Polymer Testing, Vol. 9, Issue 4, p. 271-277, 1990.
  • 7. Zimmerman C.M., Singh A., Koros W.J., 1998, Diffusion in gas separation membrane materials : a comparison and analysis of experimental characterization techniques, Journal of Polymer Science Part B, Polymer Physics, Vol.36, p. 1747-1755, 1998.
  • 8. Benjelloun-Dabaghi Z., Benali A., Mathematical modelling of the permeation of gases in polymers, Rev. IFP, Vol. 56, n°3, p. 295-303, 2001.
  • 9. Flaconneche B., Martin J., Klopffer M.H., 2001, Transport properties of Gases in Polymers : Experimental methods, Oil and Gas Science and Technology – Rev. IFP, Vol.56, n°3, p.245-259, 2001.
  • 10. Crank J. and Nicolson P. 1947, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proceedings of the Cambridge hilosophical Society, 43 , p. 50-67, 1947.
  • 11. Smith G.D, 2004, Numerical solution of partial differential equations : finite difference methods 3d edition, Oxford university Press, 2004.
  • 12. Felder R.M., Huvard G.S., 1980, Permeation, Diffusion, and Sorption of Gases and Vapors Methods in Experimental Physics, Vol. 16, Part C, p. 315-377, 1980.
  • 13. Barr C.D., Giacin J.R., Hernandez R.J., 2000, A determination of solubility coefficient values determined by gravimetric and isostatic techniques, Packaging Technology and Science, Vol. 13, Issue 4, p. 157-167, 2000.
  • 14. Wong B;, Zhang Z., Handa Y.P., 1998, High-precision gravimetric technique for determining the solubility and diffusivity of gases in polymers Journal of Polymer Science Part B, Polymer Physics, Vol.36, p. 2025-2032, 1998
  • 15. Sebok B., Kiss G., Dobos G., Reti F., Majoros T., Krafesi O.H., 2013, Novel instrument and method for investigation of small permeation fluxes of gases through different membranes, Measurement, Vol. 46, Issue 9, p. 3516-3524, 2013.
  • 16. Zhou S., Stern S.A., 1990, The solubility of hydrogen in glassy poly(vinyl acetate) at elevated pressures, Journal of Membrane Science, Vol. 50, Issue 1, p.19-29, 1990.
  • 17. Bayle J., Perreux D., Chapelle D., Thiébaud F., Nardin P., 2010, A model to predict the permeation of type IV hydrogen tanks, Proceedings of the 18th WHEC2010, 16-21 May 2010, Essen, Germany, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a870af5-ad15-4bc0-aee4-8324470fe6ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.