PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Memory dependent triple-phase-lag thermo-elasticity in thermo-diffusive medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the paper is to look at the propagation and reflection of plane waves in a thermo-diffusion isotropic medium. The reflection of plane waves in a thermo-diffusion medium was investigated in this study with reference to triple phase lag thermo-elasticity. The memory dependent derivative (MDD) is applied for this investigation. The fundamental equations are framed and solved for a particular plane. The four plane waves that are propagating across the medium are, shown namely: longitudinal displacement, P-wave, thermal diffusion T-wave, mass diffusion MD-wave and shear vertical SV-wave. These four plane wave velocities are listed for a specific medium, illustrating the impact of the diffusion coefficient and are graphically represented. Expressions for the reflection coefficient for the incidence plane wave are produced from research on the reflection of plane waves from the stress-free surface. It should be noted that these ratios are graphically represented and shown when diffusion and memory dependent derivative (MDD) factors are in play. The new model is relevant to many different fields, including semiconductors, earth- engineering, and electronics, among others, where thermo-diffusion elasticity is significant. Diffusion is a technique that can be applied to the production of integrated circuits, MOS transistors, doped polysilicon gates for the base and emitter in transistors, as well as for efficient oil extraction from oil reserves. Wave propagation in a thermos-diffusion elastic media provides crucial information about the presence of fresh and enhanced waves in a variety of technical and geophysical contexts. For experimental seismologists, developers of new materials, and researchers, this model might be useful in revising earthquake estimates.
Rocznik
Strony
137--162
Opis fizyczny
Bibliogr. 67 poz., wykr.
Twórcy
  • Mathematics, Shishu Niketan Model Sr Sec School, INDIA
autor
  • Department of Mathematics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, INDIA
  • Department of Mechanical Engineering, Department of Mechanical Engineering, Institute of Mechanical Engineering, University of Zielona Góra, POLAND
Bibliografia
  • [1] Biot M.A. (1956): Thermoelasticity and irreversible thermodynamics.– Journal of Applied Physics, vol.2, pp.240- 253.
  • [2] Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity.– J. Mech. Phys. Solid, vol.15, pp.299-309.
  • [3] Green A.E. and Lindsay K.A. (1972): Thermoelasticity.– J. Elast, vol.2, pp.1-7.
  • [4] Green A.E. and Naghdi P.M. (1991): A re-examination of the basic postulates of thermomechanics.– Proc. R. Soc. Lond. Ser. A, vol.432, pp.171-194.
  • [5] Green A.E. and Naghdi P.M. (1992): On damped heat waves in an elastic solid.– J. Therm. Stress, vol.15, pp.252-264.
  • [6] Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation.– J. Elast., vol.31, pp.189-208.
  • [7] Tzou D.Y. (1995): A unified field approach for heat conduction from macro-to micro-scales.– J. Heat Transf., vol.117, No.1, pp.8-16.
  • [8] Choudhuri S.R. (2007): On a thermoelastic three-phase-lag model.– J. Therm. Stresses, vol.30, No.3, pp.231-238.
  • [9] Nowacki W. (1974): Dynamical problems of thermo-diffusion in solids.– I. Bull Pol. Acad. Sci. Tech., vol.22, pp.55-64.
  • [10] Nowacki W. (1976): Dynamical problems of diffusion in solids.– Eng. Fract. Mech., vol.8, pp.261-266.
  • [11] Dudziak W. and Kowalski S. J. (1989): Theory of thermodiffusion for solids.– Int. J. Heat Mass Transfer, vol.32, No.11, pp.2005-2013.
  • [12] Sherief H. H., Hamza F. A. and Saleh, H. A. (2004): The theory of generalized thermoelastic diffusion.– Int. J. Eng. Sci., vol.42, No.5-6, pp.591-608. DOI: 10.1016/j.ijengsci.2003.05.001.
  • [13] Olesiak Z. S. and Pyryev Y. A. (1995): A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder.– Int. J. Eng. Sci., vol.33, pp.773-780.
  • [14] Othman M.I.A. and Eraki E.E.M. (2017): Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model.– Mechanics Based Design of Structures and Machines, vol.45, No.2, pp.145- 59, doi: 10.1080/15397734.2016.1152193.
  • [15] Yadav A.K. (2020): Reflection of plane waves from the free surface of a rotating orthotropic magneto-thermoelastic solid half-space with diffusion.– J. Therm. Stresses, vol.40, No.1, pp.86-106, DOI: 10.1080/01495739.2020.1842273.
  • [16] Mondal S. and Kanoria M. (2020): Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity.– Mechanics Based Design of Structures and Machines, vol.48, No.3, pp.277-298, Doi:10.1080/15397734.2019.1620529.
  • [17] Yadav A.K. (2020): Reflection of magneto-photothermal plasma waves in a diffusion semiconductor in two- temperature with multi-phase-lag thermoelasticity.– Mechanics Based Design of Structures and Machines. DOI: 10.1080/15397734.2020.1824797.
  • [18] Yadav A.K. (2021): Reflection of plane waves in a micropolar thermo-diffusion porous medium.– Waves in Random and Complex Media, DOI:10.1080/17455030.2021.1956014.
  • [19] Yadav A. K. (2021): Reflection of plane waves from the impedance boundary of a magneto-thermo-microstretch solid with diffusion in a fractional order theory of thermoelasticity.– Waves in Random and Complex Media, pp.1- 30, DOI: 10.1080/17455030.2021.1909781.
  • [20] Marin M. and Marinescu C. (1998): Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies.– International Journal of Engineering Science, vol.36, No.1, pp.73-86.
  • [21] Othman M.I.A., Tantawi R.S. and Hilal M.I.M. (2016): Hall current and gravity effect on magneto-micropolar thermoelastic medium with micro-temperatures.– J. Thermal Stress, vol.39, No.7, pp.751-771.
  • [22] Yadav A.K. (2020): Effect of impedance on the reflection of plane waves in a rotating magneto-thermoelastic solid half-space with diffusion.– AIP Advances, vol.10, Article ID 075217, https://doi.org/10.1063/5.0008377.
  • [23] Abbas I., Hobiny A., Alshehri H. and Marin M. (2012): Analysis of thermoelastic interaction in a polymeric orthotropic medium using the finite element method.– Polymers, vol.14, No.10, Article ID 2118, DOI: 10.3390/polym14102112.
  • [24] Singh B., Yadav A.K. and Gupta D. (2019): Reflection of plane waves from a micropolar thermoelastic solid half- space with impedance boundary conditions.– Journal of Ocean Engineering and Science, vol.4, pp.122-131.
  • [25] Sheoran D., Kumar R., Punia B. and Kalkal. K.K. (2022): Propagation of waves at an interface between a nonlocal micropolar thermoelastic rotating half-space and a nonlocal thermoelastic rotating half-space.– Waves in Random and Complex Media, p.1-22, DOI: 10.1080/17455030.2022.2087118.
  • [26] Saeed, Abdulkafi M., Lotfy S. K. and Marwa H. Ahamd. (2021): Magnetic field influence of photo-mechanical- thermal waves for optically excited micro-elongated semiconductor.– Photonics 2021, vol.8, pp.353. https://doi.org /10.3390 /photonics8090353.
  • [27] Yadav A.K. (2020): Photothermal plasma wave in the theory of two-temperature with multi-phase-lag thermo- elasticity in the presence of magnetic field in a semiconductor with diffusion.– Waves in Random and Complex Media, vol.32, No.5, pp.2416-2444, https://doi.org/10.1080/17455030.2020. 1854489.
  • [28] Yadav A.K., Carrera E., Schnack E. and Marin M. (2023): Effects of memory response and impedance barrier on the reflection of plane waves in a micropolar porous thermo-diffusive medium.– Mechanics of Advanced Material and Structures, pp.1-17, https://doi.org/10.1080/15376494.2023.2217556.
  • [29] Yadav A.K, Barak M.S. and Gupta V. (2023): Reflection at the free surface of the orthotropic piezo-hygro-thermo- elastic medium.– International Journal of Numerical Methods for Heat and Fluid Flow, vo 33, No.10, pp.3535-3560, https://doi.org/10.1108/HFF-04-2023-0208.
  • [30] Marin M., Ellahi R., Vlase S. and Bhatti M.M. (2020): On the decay of exponential type for the solutions in a dipolar elastic body.– Journal of Taibah University for Science, vol.14, No.1, pp.534-540.
  • [31] Alzahrani F., Hobiny A., Abbas I. and Mari M. (2020): An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities.– Symmetry, vol.12, No.5, Article ID 848, p.15, Doi: https://doi.org/10.3390/sym12050848.
  • [32] Abouelregal A.E. and Marin M. (2020): The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating.– Mathematics, vol.8, No.7, Article ID 1128, Doi: https://doi.org/10.3390/math8071128.
  • [33] Singh Baljeet (2006): Reflection of SV waves from the free surface of an elastic solid in generalized thermoelastic diffusion.– Journal of Sound and Vibration, vol.291, No.3, pp 764-778.
  • [34] Mainardi F. (2010): Fractional Calculus and Waves In Linear Viscoelasticity.– London: Imperial College Press.
  • [35] Diethelm K. (2010): Analysis of Fractional Differential Equation: An Application Oriented Exposition Using Differential Operators of Caputo Type.– Springer, Berlin.
  • [36] Wang J. L. and Li H.F. (2011): Surpassing the fractional derivative: Concept of the memory dependent derivative.– Comput. Math. Appl., vol.62, No.3, pp.1562-7, doi: 10.1016/j.camwa.2011.04.028.
  • [37] Ezzat M.A., El -Karamany A.S. and El-Bary A.A. (2014): Generalized thermo-viscoelasticity with memory- dependent derivatives.– Int. J. Mech. Sci., vol.89, pp.470-475.
  • [38] Ezzat M.A., El -Karamany A.S. and El-Bary A.A. (2015): A novel magneto-thermoelasticity theory with memory dependent derivative.– Journal of Electromagnetic Waves and Applications, vol.29, No.8, pp.1018-31, doi:10.1080/09205071.2015.1027795.
  • [39] Ezzat M.A., El -Karamany A. S. and El-Bary A.A. (2016): Modeling of memory-dependent derivatives in generalized thermoelasticity.– Eur. Phys. J. Plus., vol.131, pp.131-372.
  • [40] El-Karamany A.S. and Ezzat M.A. (2016): Thermoelastic diffusion theory with memory-dependent derivative.– J. Therm. Stress, vol.39, no.9, pp.1035-1050, DOI: 10.1080/01495739.2016.1192847.
  • [41] Lotfy K. and Sarkar N. (2017): Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature.– Mech. Time-Depend. Mater., vol.21, pp.15-30.
  • [42] Purkait P., A. Sur and Kanoria M. (2017): Thermoelastic interaction in a two-dimensional infinite space due to memory dependent heat transfer.– International Journal of Advances in Applied Mathematics and Mechanics, vol.5, No.1, pp.28-39.
  • [43] Yadav A.K. (2021): Thermoelastic waves in a fractional-order initially stressed micropolar diffusive porous medium.– Journal of Ocean Engineering and Science, vol.6, No.4, pp.376-388, doi: https://doi.org/ 10.1016/j.joes.2021.04.001.
  • [44] Li C., Guo H. and Tian X. (2018): Transient responses of a hollow cylinder under thermal and chemical shock based on generalized diffusion thermoelasticity with memory-dependent derivative.– Journal of Thermal Stresses, DOI: 10.1080/01495739.2018.1486689.
  • [45] Kant S. and Mukhopadhyay S. (2019): An investigation on responses of thermoelastic interactions in a generalized thermoelasticity with memory-dependent derivatives inside a thick plate.– Mathematics and Mechanics of Solids, vol.24, No.8, pp.2392-409, doi:10.1177/1081286518755562.
  • [46] Sarkar N., De S. and Sarkar N. (2019): Memory response in plane wave reflection in generalized magneto- thermoelasticity.– J. Electromagn. Wave, vol.33, No.10, pp.1354-1374.
  • [47] Mondal S., Pal P. and Kanoria M. (2019): Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative.– Acta Mechanica, vol.230, No.1, pp.179-99, doi:10.1007/s00707-018-2307-z.
  • [48] Yadav A.K. (2021): Effect of impedance boundary on the reflection of plane waves in fraction-order thermoelasticity in an initially stressed rotating half-space with a magnetic field.– Int J Thermophys, vol.42, p.3, https://doi.org/10.1007/s10765-020-02753-1.
  • [49] Yadav A.K. (2021): Reflection of plane waves in a fraction-order generalized magneto-thermoelasticity in a rotating triclinic solid half-space.– Mechanics of Advanced Materials and Structures, vol.29, No.25, pp.4273-4290, DOI: 10.1080/15376494.2021.1926017.
  • [50] Yadav A.K., and Singh A. (2022). Memory responses on the reflection of electro-magneto-thermoelastic plane waves from impedance boundary of an initially stressed thermoelastic solid in triple phase lag thermo-elasticity.– Mathematical Statistician and Engineering Applications, vol.71, No.4, pp.6500-6513. Retrieved from https://www.philstat.org.ph/ index.php /MSEA/article/view/1237.
  • [51] Sherief H.H. and Hussein E. (2022): Fractional order model of micropolar thermoelasticity and 2D half-space problem.– Acta Mechanica, vol.234, pp.535-552, DOI: 10.1007/s00707-022-03399-w.
  • [52] Kumar R, Kalkal K.K., Deswal S. and Sheoran D. (2022): Thermodynamical interactions in a rotating magneto- thermoelastic diffusive medium with micro-concentrations.– Waves in Random and Complex Media, DOI: 10.1080/17455030.2022.2032468.
  • [53] Yadav A. K., Carrera E., Marin M. and Othman, M.A.I. (2022): Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermoelasticity.– Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2022.2130484.
  • [54] Othmana M.I.A., Sarkar N. and Sarhan Y. Atwa (2013): Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature dependent elastic medium.– Computers & Mathematics with Applications, vol.65, No.7, pp.1103-1118.
  • [55] Othman M.I.A. and Eraki E.E.M. (2018): Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual- phase-lag model.– Multi. Model. Mater. and Struct., vol.14, No.3, pp.457-481.
  • [56] Othman M.I.A. and Mondal S. (2020): Memory dependent-derivative effect on wave propagation of micropolar thermo-elastic medium under pulsed laser heating with three theories.– Int. J. Numer. Methods for Heat and Fluid Flow, vol.30, No.3, pp.1025-1046.
  • [57] Othman M.I.A. and Mondal S. (2020): Memory-dependent derivative effect on 2D problem of generalized thermoelastic rotating medium with Lord-Shulman model.– Ind. J. Phys., vol.94, No.8, pp.1169-1181.
  • [58] Othman M.I.A., Hasona W.M. and Abd-Elaziz E.M. (2015): Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag.– J. Comput. and Theor. Nanosci., vol.12, No.9, pp.2030-2040.
  • [59] Othman M.I.A. and Said S.M., (2018): Effects of diffusion and internal heat source on a two-temperature thermoelastic medium with three-phase-lag model.– Arch. of Thermo-Dynamics, vol.39, No.2, pp.15-39.
  • [60] Lotfy K. and Hassan W. (2014): Normal mode method for two-temperature generalized thermoelasticity under thermal shock problem.– Journal of Thermal Stresses, vol.37, no.5, pp.545-560.
  • [61] Lotfy K., El-Bary A.A. and Tantawi R.S. (2019): Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory.– European Physical Journal Plus, vol.134, no.6, pp.280-294.
  • [62] Lotfy K. Elidy E.S. and Tantawi R.S. (2021): Piezo-photo-thermo-elasticity transport process for hyperbolic two- temperature theory of semiconductor material.– International Journal of Modern Physics C, vol.32, no.7, Article ID.2150088.
  • [63] Lotfy K., Tantawi R.S. (2020): Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field.– Silicon, vol.12, no.2, 295–303.
  • [64] Mahdy A.M.S., Lotfy K., El-Bary A.A. and Tayel I.M. (2021): Variable thermal conductivity and hyperbolic two- temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses.– European Physical Journal Plus, vol.136 no.6, 651.
  • [65] Yasein M., Mabrouk N., Lotfy K. and El-Bary A.A. (2019): The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type.– Results in Physics, vol.15, 102766.
  • [66] Mahdy A.M.S., Gepreel K.A., Lotfy K. and El-Bary A.A. (2021): A numerical method for solving the Rubella ailment disease model.– International Journal of Modern Physics C, vol.32, no.7, 2150097.
  • [67] Sharma J.N. (2001): On the propagation of thermoelastic waves in homogeneous isotropic plates.– Indian Journal of Pure and Applied Mathematics, vol.32, pp.1329-1341.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a86d5e9-d8a5-49a5-8f57-e57fec4b85a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.