Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines a steady laminar Casson fluid flow induced by a semi-infinite vertical plate under the impact of the Darcy-Forchheimer relation and thermal radiation. The features of mixed convection, cross-diffusion, radiation absorption, heat generation, chemical reactions and viscous dissipation are also considered to explain the transport phenomenon. The resultant system of equations, concerned with the problem under consideration, is transformed into a group of non-linear ordinary differential equations (ODEs) by means of similarity variables. The bvp4c method, an instrument popular for its numerical accomplishments, is utilized to solve this problem. The effect of flow parameters on heat transfer, concentration and velocity is evaluated via diagrams. To validate our code, we have compared the present outcomes to the prevenient literature, and stable consent has been detected. Moreover, the friction coefficient 𝐶𝑓𝑥 , Nusselt number Nu𝑥, and Sherwood number Sh𝑥 are also computed to assess velocity gradient, efficiency of heat transfer and mass transfer process, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
45--59
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
- University of Rajasthan, Department of Mathematics, Jaipur, Rajasthan-302004, India
autor
- University of Rajasthan, Department of Mathematics, Jaipur, Rajasthan-302004, India
Bibliografia
- [1] Casson, N.A. (1959). A flow equation for the pigment-oil suspensions of the printing ink type. In: Rheology of Disperse Systems (C.C. Mill, ed.), (pp. 84‒102). Pergamon Press.
- [2] Heller, W. (1960b). Rheology of disperse systems, Proceedings of a Conference Organized by the British Society of Rheology, (C.C. MILL, ed.). Pergamon Press, New York, 1959, VII + 223. Journal of Polymer Science, 47(149), 537–538. doi: 10.1002/pol.1960.1204714975
- [3] Ramana, R.M., Kumar, J.G., & Raju, K.V. (2020). Melting and radiation effects on MHD heat and mass transfer of Casson fluid flow past a permeable stretching sheet in the presence of chemical reaction. AIP Conference Proceedings, 2246(1), 020021. doi:10.1063/5.0014732
- [4] Krishna, M.V., Ahammad, N.A., & Chamkha, A.J. (2021). Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Studies in Thermal Engineering, 27, 101229. doi: 10.1016/j.csite.2021.101229
- [5] Kodi, R., Mopuri, O., Sree, S., & Konduru, V. (2021). Investigation of MHD Casson fluid flow past a vertical porous plate under the influence of thermal diffusion and chemical reaction. Heat Transfer, 51(1), 377–394. doi: 10.1002/htj.22311
- [6] Jaffrullah, N.S., Sridhar, N.W., & Ganesh, N.G.R. (2023). MHD radiative Casson fluid flow through Forchheimer permeable medium with Joule heating influence. CFD Letters, 115(8), 79–199. doi: 10.37934/cfdl.15.8.179199
- [7] Navier, H. (1827). Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie des sciences de l’Institut de France, 6.
- [8] Krishna, M.V., & Chamkha, A.J. (2019). Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15, 102652. doi: 10.1016/j.rinp.2019.102652
- [9] Obalalu, A.M., Ajala, O.A., Abdulraheem, A., & Akindele, A.O. (2021). The influence of variable electrical conductivity on nonDarcian Casson nanofluid flow with first and second-order slip conditions. Partial Differential Equations in Applied Mathematics, 4, 100084. doi: 10.1016/j.padiff.2021.100084
- [10] Vajravelu, K., & Hadjinicolaou, A. (1997). Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. International Journal of Engineering Science, 35(12-13), 1237–1244. doi: 10.1016/s0020-7225(97)00031-1
- [11] Chamkha, A.J. (1999). Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption. International Journal of Heat and Fluid Flow, 20(1), 84–92. doi: 10.1016/s0142-727x(98)10032-2
- [12] Kumar, M.A., Reddy, Y.D., Goud, B.S., & Rao, V.S. (2022). An impact on non-Newtonian free convective MHD Casson fluid flow past a vertical porous plate in the existence of Soret, Dufour, and chemical reaction. International Journal of Ambient Energy, 43(1), 7410–7418. doi: 10.1080/01430750.2022. 2063381
- [13] Raghunath, K., Obulesu, M., & Raju, K.V. (2023). Radiation absorption on MHD free conduction flow through porous medium over an unbounded vertical plate with heat source. International Journal of Ambient Energy, 44(1), 1712–1720. doi: 10.1080/01430750.2023.2181869
- [14] Forchheimer, P. (1901). Wasserbewegung durch boden. Zeitschrift des Vereins deutscher Ingenieure, 45, 1782–1788.
- [15] Aleem, M., Asjad, M.I., Shaheen, A., & Khan, I. (2020). MHD influence on different water based nanofluids (TiO2, Al2O3,CuO) in porous medium with chemical reaction and Newtonian heating. Chaos, Solitons & Fractals/Chaos, Solitons and Fractals, 130, 109437. doi: 10.1016/j.chaos.2019.109437
- [16] Nasir, S., Berrouk, A.S., Tassaddiq, A., Aamir, A., Akkurt, N., & Gul, T. (2023). Impact of entropy analysis and radiation on transportation of MHD advance nanofluid in porous surface using Darcy-Forchheimer model. Chemical Physics Letters, 811,140221. doi: 10.1016/j.cplett.2022.140221
- [17] Bilal, M., Khan, I., Gul, T., Tassaddiq, A., Alghamdi, W., Mukhtar, S., & Kumam, P. (2021). Darcy-Forchheimer hybrid nano fluid flow with mixed convection past an inclined cylinder. Computers, Materials & Continua, 66(2), 2025–2039. doi:10.32604/cmc.2020.012677
- [18] Sinha, S., & Yadav, R.S. (2022). MHD mixed convective slip flow along an inclined porous plate in presence of viscous dissipation and thermal radiation. Trends in Sciences, 19(4), 2685. doi: 10.48048/tis.2022.2685
- [19] Roy, P.P., Chowdhury, S., Raj, M.H., Islam, M.Q., & Saha, S. (2023). Forced, natural and mixed convection of non-Newtonian fluid flows in a square chamber with moving lid and discrete bottom heating. Results in Engineering, 17, 100939. doi: 10.1016/j.rineng.2023.100939
- [20] Mukhopadhyay, S. (2009). Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity. International Journal of Heat and Mass Transfer, 52(21-22), 5213–5217. doi: 10.1016/ j.ijheatmasstransfer.2009.04.013
- [21] Mukhopadhyay, S., & Vajravelu, K. (2012). Effects of transpiration and internal heat generation/absorption on the unsteady flow of a Maxwell fluid at a stretching surface. Journal of Applied Mechanics, 79(4), 044508. doi: 10.1115/1.4006260
- [22] Hussain, M., Jahan, S., Ranjha, Q.A., Ahmad, J., Jamil, M.K., & Ali, A. (2022). Suction/blowing impact on magneto-hydrodynamic mixed convection flow of Williamson fluid through stretching porous wedge with viscous dissipation and internal heat generation/absorption. Results in Engineering, 16, 100709.doi: 10.1016/j.rineng.2022.100709
- [23] Bejawada, S.G., Reddy, Y.D., Jamshed, W., Nisar, K.S., Alharbi, A.N., & Chouikh, R. (2022). Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium. Alexandria Engineering Journal, 61(10), 8207–8220. doi: 10.1016/ j.aej.2022.01.043
- [24] Raju, K.V., Mohanaramana, R., Reddy, S.S., & Raghunath, K. (2023). Chemical radiation and SoRET effects on unsteady MHD convective flow of Jeffrey nanofluid past an inclined semi-infinite vertical permeable moving plate. Communications in Mathematics and Applications, 14(1), 237–255. doi: 10.26713/cma.v14i1.1867
- [25] Zhao, X., Mopuri, O., Raju, K. V., Farooq, S., Abdullaev, S., Alhazmi, H., Khan, S.U., & Jameel, M. (2024). Analysis of free convective flow of nanofluid due to inclined surface with thermos-diffusion effects and chemical reaction. Tribology International, 197, 109792. doi: 10.1016/j.triboint.2024.109792
- [26] Planck, M. (1914). The theory of heat radiation. Blakiston.
- [27] Asha, S., & Sunitha, G. (2020). Thermal radiation and Hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Studies in Thermal Engineering, 17,100560. doi: 10.1016/j.csite.2019.100560
- [28] Abbas, A., Ijaz, I., Ashraf, M., & Ahmad, H. (2021). Combined effects of variable density and thermal radiation on MHD Sakiadis flow. Case Studies in Thermal Engineering, 28, 101640. doi: 10.1016/j.csite.2021.101640
- [29] Saravana, R., Reddy, R.H., Murthy, K.V.N., & Makinde, O.D. (2022). Thermal radiation and diffusion effects in MHD Williamson and Casson fluid flows past a slendering stretching surface. Heat Transfer, 51(4), 3187–3200. doi: 10.1002/htj.22443
- [30] Gambo, J.J., & Gambo, D. (2020). On the effect of heat generation/absorption on magnetohydrodynamic free convective flow in a vertical annulus: An Adomian decomposition method. Heat Transfer, 50(3), 2288–2302. doi: 10.1002/htj.21978
- [31] Rao, S.R., Vidyasagar, G., & Deekshitulu, G. (2021). Unsteady MHD free convection Casson fluid flow past an exponentially accelerated infinite vertical porous plate through porous medium in the presence of radiation absorption with heat generation/absorption. Materials Today: Proceedings, 42(3), 1608–1616. doi:10.1016/j.matpr.2020.07.554
- [32] Manjunatha, S., Puneeth, V., Gireesha, B., & Chamkha, A.J. (2022). theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. Journal of Applied and Computational Mechanics, 8(4), 1279–1286. doi: 10.22055/jacm.2021.37698.3067
- [33] Amar, N., Kishan, N., & Goud, B.S. (2023). Viscous dissipation and radiation effects on MHD heat transfer flow of Casson fluid through a moving wedge with convective boundary condition in the existence of internal heat generation/absorption. Journal of Nanofluids, 12(3), 643–651. doi: 10.1166/jon.2023. 1948
- [34] Ou, J.W., & Cheng, K.C. (1973). Viscous dissipation effects on thermal entrance region heat transfer in pipes with uniform wall heat flux. Applied Scientific Research, 28, 289–301. doi: 10.1007/bf00413074
- [35] Brinkman, H.C. (1951). Heat effects in capillary flow I. Applied Scientific Research. 2, 120– 124. doi: 10.1007/ bf00411976
- [36] Swain, B., Parida, B., Kar, S., & Senapati, N. (2020). Viscous dissipation and Joule heating effect on MHD flow and heat transfer past a stretching sheet embedded in a porous medium. Heliyon, 6(10), e05338. doi: 10.1016/j.heliyon.2020.e05338
- [37] Das, U.J. (2021). MHD mixed convective slip flow of Casson fluid over a porous inclined plate with Joule heating, viscous dissipation and thermal radiation. Journal of Mathematical and Computational Science, 11(3), 3263–3275. doi: 10.28919/jmcs/5713
- [38] Sadia, H., Mustafa, M., & Farooq, M. (2023). Numerical and series solutions for von-Kármán flow of viscoelastic fluid inspired by viscous dissipation and Joule heating effects. Alexandria Engineering Journal, 75, 181–190. doi: 10.1016/j.aej. 2023.05.075
- [39] Soret, C. (1880). Influence de la température sur la distribution des sels dans leurs solutions. Comptes rendus de l'Académie des Sciences (Paris), 91, 289.
- [40] Dufour, L. (1872). The diffusion thermoeffect. Archives des Sciences Physiques et Naturelles, 45, 9–12.
- [41] Krenn, P., Zimmermann, P., Fischlschweiger, M., & Zeiner, T. (2021). Influence of thermal diffusion on the solvent absorption kinetics of highly cross-linked epoxy resins. Journal of Molecular Liquids, 339, 116809. doi: 10.1016/j.molliq.2021.116809
- [42] Revathi, G., Avadapu, S., Raju, C., Babu, M.J., Zidan, A., Alaoui, M.K., Shah, N.A., & Chung, J.D. (2023). Dynamics of Lorentz force and cross-diffusion effects on ethylene glycol-based hybrid nanofluid flow amidst two parallel plates with variable electrical conductivity: A multiple linear regression analysis. Case Studiesin Thermal Engineering, 41, 102603. doi: 10.1016/j.csite.2022.102603
- [43] Ullah, S., Ullah, I., Ali, A., Shah, K., & Abdeljawad, T. (2024). Investigation of cross-diffusion effect on radiative Jeffery-Hamel flow in convergent/divergent stretchable channel with Lorentz force and Joule heating. Alexandria Engineering Journal, 86, 289–297. doi: 10.1016/j.aej.2023.11.054
- [44] Alam, M.S., Ferdows, M., Ota, M., & Maleque, M.A. (2006). Dufour and Soret effects on steady free convection and mass transfer flow past a semi-infinite vertical porous plate in a porous medium. International Journal of Applied Mechanics and Engineering, 11(3), 535–545.
- [45] Aruna, S., & Lakshmi, K.J. (2017). Combined effects of thermal diffusion and diffusion thermo on an unsteady MHD Casson fluid flow past a semi-infinite vertically inclined permeable moving plate. Journal of Nanofluids, 6(6), 1149–1159. doi: 10.1166/jon.2017.1403
- [46] Ram, M.S., Ashok, N., & Shamshuddin, M.D. (2023). Numerical solution of radiative and dissipative flow on non-Newtonian Casson fluid model via infinite vertical plate with thermo-diffusion and diffusion-thermo effects. Journal of Nanofluids, 12(3), 777–785. doi: 10.1166/jon.2023.1976
- [47] Krishna, M. V., Swarnalathamma, B., & Chamkha, A.J. (2019). Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. Journal of Ocean Engineering and Science, 4(3), 263–275. doi:10.1016/j.joes.2019.05.002
- [48] Kumar, B., Seth, G.S., Nandkeolyar, R., & Chamkha, A.J. (2019). Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid. International Journal of Thermal Sciences, 146, 106101. doi:10.1016/j.ijthermalsci.2019.106101
- [49] Brewster, M. Q. (1992). Thermal radiative transfer and properties. John Wiley & Sons
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a848179-eaad-43eb-85a1-736fed7b02e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.