PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Modeling of Planetary Vehicle’s Fall on Soft Soil

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of future planetary mission is to explore more new zones on Mars planet. This goal may be achieved by using high speed planetary vehicle, (Rover). The motion of planetary vehicles at high speed and on unknown terrain increases the number of possible risks. One risk is a sudden change of ground level in the vehicle path causes a fall down onto a low ground. This paper presents a study and simulation of the dynamic response of a free fall of a quarter vehicle (rover) model with rigid wheel on a soft soil. A simplification of Bekker’s equation is derived and used in the numerical solution of the two coupled dynamic equations of motion. The Dynamic response of the unsprung mass, rigid wheel, shows a three stages; the sinkage stage, the equilibrium stage, and the pulling out stage from soil. The simulation shows that having rigid body mode helps in pulling out the vehicle wheel from the soil. It shows that the first three stages of the first fall are the most significant ones. They have the largest sinkage, largest impulsive force, and largest amplitude of the system dynamic response during interaction of the rigid wheel and the soft soil following the free fall. The existence of a damping reduces the dynamic response magnitude and prevent the unsprung mass from pulling out the wheel from soil after sinkage.
Twórcy
autor
  • Central Connecticut State University, New-Britain, CT, 06050, USA
Bibliografia
  • [1] Ding L., Deng Z., Gao H., Nagatani K., Yoshida K., “Planetary rovers’ wheel-soil interaction mechanics, new challenges and applications for wheeled mobile robots”, Journal of Intelligent Service Robotics, vol. 4, 2011, no. 1, 17–38. DOI: 10.1007/s11370-010-0080-5.
  • [2] Azimi A., Holz D., Kovecses J., Angeles J., Teichmann M., Efficient Dynamics Modeling for Rover Simulation on Soft Terrain, AIAA, 2012, 0804.
  • [3] Irani R. A., Bauer R. J., Warkentin A., “Dynamic Wheel-Soil Model for Lightweight Mobile Robots with Smooth Wheels”, Journal of Intelligent & Robotic Systems, vol. 71, 2013.
  • [4] Taheri S., Sandu C., Taheri S., Pinto E., Gorsich D., “A technical survey on Terramechanics models for tire–terrain interaction used in modeling and simulation of wheeled vehicles”, Journal of Terramechanics, vol. 57, 2015, 1–22.
  • [5] Li Z., Wang Y., “Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain”, Scientific World Journal, 2014. DOI: 10.1155/2014/396382.
  • [6] Bekker M.G., Theory of Land Locomotion, the Mechanics of Vehicle Mobility, University of Michigan Press Ann Arbor, 1956.
  • [7] Wong J.-Y., Reece A.R., “Prediction of Rigid Wheel Performance of Driven Rigid Wheels, Part I”, Journal of Terramechanics, vol. 4, no. 1, 1967, 81–98.
  • [8] Onafko O., A. R. Reece., “Soil Stresses and Deformation Beneath Rigid Wheels”, Journal of Terramechanics, vol. 4, no. 1, 1967, 59–80.
  • [9] Wong Jo. Y., Theory of Ground Vehicles, John- Willey & Sons, New-York, 2001.
  • [10] Janosi Z., “An Analyses of Pneumatic Tire Performance on Deformable Soils”. In: Proc. First Int. Con. On Terrain Vehicle Systems, Edizon Minerva Tecnica, Torino, 1961.
  • [11] Vincent E.T., “Pressure distribution on and Flow of Sand Past Rigid Wheel”. In: Proc. First Int. Con. On Terrain Vehicle Systems, Edizon Minerva Tecnica, Torino, 1961, 859–877.
  • [12] Shibly H., Iagnemma K., Dubowsky S., “An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers”, Journal of Terramechanics, vol. 42, 2005, 1–13.
  • [13] Iagnemma K., Shibly H., Rzepniewski A., Dubowsky S., “Planning and control algorithms to enhance rover rough terrain mobility”. In: Proceeding of I-SAIRAS: 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, USA, June 2001.
  • [14] Clough R.W., Penzien J., Dynamics of Structures, McGraw Hill, 1975.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a7c6e02-e55c-4c6d-bb15-0f05acef6845
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.