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Abstract:
The objective of future planetary mission is to explore 
more new zones on Mars planet. This goal may be 
achieved by using high speed planetary vehicle, (Rov-
er). The motion of planetary vehicles at high speed and 
on unknown terrain increases the number of possible 
risks. One risk is a sudden change of ground level in 
the vehicle path causes a fall down onto a low ground. 
This paper presents a study and simulation of the dy-
namic response of a free fall of a quarter vehicle (rover) 
model with rigid wheel on a soft soil. A simplification 
of Bekker’s equation is derived and used in the numeri-
cal solution of the two coupled dynamic equations of 
motion. The Dynamic response of the unsprung mass, 
rigid wheel, shows a three stages; the sinkage stage, 
the equilibrium stage, and the pulling out stage from 
soil. The simulation shows that having rigid body mode 
helps in pulling out the vehicle wheel from the soil. It 
shows that the first three stages of the first fall are the 
most significant ones. They have the largest sinkage, 
largest impulsive force, and largest amplitude of the 
system dynamic response during interaction of the 
rigid wheel and the soft soil following the free fall. The 
existence of a damping reduces the dynamic response 
magnitude and prevent the unsprung mass from pulling 
out the wheel from soil after sinkage. 

Keywords: dynamic modeling, dynamic response, sink-
age following free fall, rigid wheel soft soil mechanics 

1. Introduction
Exploration of more planetary zones requires trav-

eling for a long distance which increases the demand 
for high speed planetary vehicles, rovers. High speed 
motion of any vehicle on unknown terrain encounters 
a fall dawn onto a low ground. 

Planetary vehicle have metal rigid wheels to sus-
tain the low temperatures on planets. The size of rov-
ers and their wheels are relatively small. In addition 
planetary vehicles carry on instruments which are 
impact sensitive. 

A significant part of Mars planet terrain is a loose 
soil which is been investigated in this work. A large 
number of research works were conducted on plan-
etary vehicles traversing loose horizontal terrain for 
rigid wheels [1–3], for tires [4], and traversing loose 
sloped terrain [5]. The main focus was to investigate 

the traction of planetary vehicles’ wheels at quasi 
static conditions. All previous studies did not give the 
necessary attention to the dynamic response of the 
interaction lightweight vehicles – loose terrain.

 The fall of a rigid wheel on a soft soil has differ-
ent mechanics than a common fall of rubber wheel on 
a hard ground. This case motivates the study of the 
mechanics during interaction rigid wheel and soft soil 
following rover free fall. This contribute to more un-
derstanding of the dynamic response of a rover fol-
lowing a free fall on a soft soil as is on Mars planet. 
The gained knowledge of the mechanics of the wheel-
soil interaction enhances the design of future plan-
etary vehicles.

Many studies and experiments were done to de-
termine the mechanics of the interaction between 
a rigid wheel and soft soil for off road vehicles. Bekker 
[6] derived the analytical relationship of the normal 
stress σ exerted on a point on the rim of a wheel as 
function of the point sinkage z for sandy soil as: 

  (1)

And for the shear stress τ is given by:

   (2)

Where n is the wheel sinkage exponent (soil 
exponent), K1 [KPa], and K2 [KN/m3] are pressure 
sinkage moduli, r is wheel radius [m], b is wheel width 
[m], j shear deformation distance, f is internal friction 
angle [deg], k is the shear deformation modulus, and 
co is the soil cohesion.

Previous experiments on sand showed that the 
location of the maximum normal stress is a function 
of the slip i, where the slip is defined as one minus 
the ratio of actual traveling speed to the wheel linear 
speed. The location qm, see Figure 1, of the maximum 
normal stress on a rim of rigid wheel is given by [7] as

  (3)

Where c1 and c2 are the coefficients that define 
the relative location of the maximum normal stress, 
and θ1 is the angular location of contact beginning, 
entry angle.

During rotation of the wheel each point on the 
contact surface of the wheel rim and the soil has 
sinkage z. The sinkage is determined as the difference 
between the vertical projections of the locations of 
the considered point and the first contact point. The 
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result is that the sinkage z is a function of the angular 
location θ and the wheel radius r. 

The normal stress distribution, Equation (1), can 
be expressed as a function of the angle θ using the 
unique relationship between sinkage and angular 
location of any point on the wheel rim.

Substituting this relation into Equation (1) gives 
the distribution of the normal stress along the contact 
surface as:

  (4)

(5)

The normal stress around the wheel rim starts 
from zero at the free surface, at the starting point of 
the contact area, increases toward a maximum value, 
and then decreases back to zero at the end of contact 
with soil [7 –11]. This stress distribution is divided to 
two zones, 1 and 2, see Figure 1. The stress indices in 
the equations are referred to the zone number.
 Determination of the total shear deformation distance 
j of a point on the wheel rim that slips in soft soil was 
introduced by [7, 8] as:

 
  (6)

Substitution of this expression into Equation (2) 
to obtain the shear stress new expression during slip-
page as: 

   (7)

While another approach was taken to determine 
the shear deformation distance j by considering the 
path of any point on the wheel rim as cycloid and is 
function of the slippage [10]. The result is more com-
plicated expression. In this work the shear defor-
mation distance j expression as it is in Equation (6) 
was adopted.

 The forces that act on the contact surface of a rig-
id wheel during driving on a soft terrain are deter-
mined by integrating; the horizontal component of 
the stresses to give the horizontal force Fx, the vertical 
components of the stresses to give the vertical force 
Fz, and the shear stress on the contact area to give the 
torque T, as follow:

 
  (8)

  (9)

  (10)

The nonlinearity of j expression in the shearing 
stress formula in equations (8)–(10) forced numeri-
cal integration in order to determine the forces and 
torque. In this case there is no closed form for the 
forces and torque that act on a wheel interacts with 
soft soil. The absence of closed forms prevent alge-
braic operation of the wheel equilibrium equations 
which is needed for on-line wheel-soil interaction 
prediction in the case of planetary missions. The on-
line soil characteristics prediction requires another 
approach of force calculation [12]. 

 A previous work on reformulation of the basic 
mechanics of a rigid driven wheel on a soft terrain 
was introduced by [Shibly et al., 12, 13]. Recalculating 
the stress distribution around the rim of a driven 
rigid wheel that based on the experimental data given 
in [9] and redrawing of the stress distribution on 
a Cartesian Coordinates yields pattern very close to 
a triangle, see Figure 2. In this figure the upper three 
curves are the normal stress σ distribution, and the 
lower three curves are the shear stress τ distribution 
around the rim of driven rigid wheel on soft terrain 
for different values of soil exponent n. Therefore, the 
stress distribution can be approximated by triangles. 
A similar observation was reached by Vincent [11]. 

Integration of the normal stresses and sheer 
stresses act on the rim of a rigid wheel which inter-
acts with soft soil is given by:

Fig. 2. Normal stress σ distribution, and shear stress τ 
distribution for different values of n [12]

Fig. 1. Free body diagram of driven rigid wheel on soft 
soil [12]
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(11) 

 The power of the exponent in the shear stress for-
mula in equation (7) is nonlinear. Therefore the inte-
gration has to be done numerically. The uniqueness 
in the case under consideration is the accuracy of in-
tegration results and not the exact stress distribution 
around the rim of the wheel. The stress distribution 
can be approximated by an equivalent triangle, which 
has the same area and the same maximum stress 
value and q1 as its base. An equivalent distribution of 
the stresses, which act on the wheel contact surface 
with soft soil, was developed. Based on the equivalent 
stress distribution a new closed form formulation of 
the rigid wheel- soft soil interaction mechanics was 
created. A comparison between those formulations 
was compared with conventional formulations for 
forces and torque that act on the wheel. The results 
of the comparison shown graphically were almost 
matching. An experimental validation of the theoreti-
cal results was presented [12]. 

2. Stresses and Forces Analysis
The equivalent distribution for the two zones 

yields a linear stress distribution. The equivalent 
stress distribution Si of normal stress σ and shear 
stress τ are triangles with two sides which are de-
fined by:

    (12)

And
 

   (13) 
 

In this work a study of the dynamic response of 
a rover fall down into soft soil and its penetration 
into a soft soil is presented. To simplify the interac-
tion mechanics wheel-soil, and to simulate also the 
interaction of a round foot of a walking on soft soil 
a rotation less rover’s wheel case was considered. The 
shape of the foot in this study is circular and has the 
same radius as of the rover’s wheel. In this case the 
normal stress during sinkage is function of the wheel 
sinkage and has symmetric distribution in both sides 
of the vertical direction, while the maximum normal 
stress acts at the lowest point of the wheel as shown 
in Figure 3a. 

In this case the equivalent distribution of the nor-
mal stresses is approximated as triangle of equal sides 
where . 

Substitution of the equivalent stress distribution 
and integration along the wheel contact area give the 
normal load as:

  (14) 

Substitute Equations (12 & 14) into Equation (11), 
and integrate to obtain the vertical force as:

 
  (15)

Plotting the expression within the parenthesis in 
the last equation for the range 0°< q1< 45° and per-
form a straight line fitting gives a straight line with 
slope of 0.98, see Figure 4. As a result the expression 
is simplified as it is shown in Equation (15).

  (16)

From geometry, see Figure 3, we have:
 

   (17)

Equate equation (16) and equation (17) to get 
a simplified relation between the entry angle θ1 and 
the maximum sinkage zm:

Figure 3-b. Equivalent triangle of normal stress 
distribution

Fig. 3-a. Free body diagram of rigid wheel on soft soil



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  10,      N°  3        2016

Articles 25

   (18)

Substitute into equation (15) to get:

  (19)

The maximum value of normal stress is at θ=0o. 
Substitute into Eq. (4) to get: 

  
  (20)

After simplifications the normal force expression is:

  (21)

The last expression of the vertical force Fz shows 
that the normal force is a function of the sinkage zm 
during wheel sinkage into the soil. This function is 
nonlinear and for a specific soil parameters the coef-
ficient of the sinkage kz has constant value and it is 
defined as:

 
  (22)

And the equivalent normal force on the wheel as 
function of the sinkage becomes:

  (23) 

A simulation of the normal force Fz as function of 
the sinkage zm for various values of soil exponent n is 
shown in Figure 5. 

To examine the increase in the coefficient value kz 
as function of the soil exponent the ratio of coefficient 
for a two values of soil exponent n1 and n2 is found 
to be:

  (24)

This ratio is computed for low and large values 
of soil exponent n1=0.2, n2=1.6, and wheel width of 
b=0.06[m] gives ratio of 135.5. In a similar way the 
ratio of the normal force Fz for a two values of soil ex-
ponent n1 and n2 is given by: 

  (25) 

And this ratio for a sinkage value of z=b/2 is 0.379. 
This means that the soil exponent n has a significant 
effect on the coefficient kz while this effect is been di-
minished in the formula of the normal force. 

2.1. Kinematic Model
Our model of the simulation is a four wheels of 

rover. The rover platform is linked to the wheels by 
a mechanical structure. The mechanical structure’s 
properties specify the rover stiffness and damping. In 
this work a simplified model of one quarter of rover is 
been considered. The model has two lumped masses. 
One is the sprung mass ms (one quarter of rover) and 
it is linked to a second lumped unsprung mass mus, 
(rigid wheel mass) by a mechanical suspension. The 
mechanical structure is modeled as a common linear 
mechanical suspension consists of linear high stiff-
ness ks spring and damper with low damping coef-
ficient cs, see Figure (6). The wheel is considered as 
a rigid body of radius r.

Fig. 4. Straight line fitting

Fig. 5. Normal force of soil as function of sinkage for 
various values of soil exponent n Figure 6. Dynamic model of quarter vehicle
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3. Dynamics Analysis
The dynamic response of the rover as a result 

of its free fall on soft soil starts at the instant of the 
first wheel’s contact with the soil and ends when the 
wheel is settled down. Any bounce of the wheel leads 
to a second free fall and so on. 

Using newton’s second law for the sprung mass 
and for the wheel to obtain two dynamic equations of 
motion of the model as:

  (26)

       (27)

And in matrix form:

  (28)

Where:

  

  (29)

The vehicle (rover) suspension structure has small 
damping value and we assume that it will not have 
a significant effect on the natural frequencies of the 
suspension structure and can be omitted for the pur-
pose of determining the eigenvalues and eigenvectors 
[9]. As a result the following equation is used to deter-
mine eigenvalues and eigenvectors of the model:

   (30)

The initial conditions of the dynamic equation of 
motion of a quarter vehicle model are zero position 
and velocity equal to the final velocity of the free fall. 
And the external force is the interaction force between 
the wheel and the soft soil is the normal force Fz. Solv-
ing the last equation to obtain the eigenvalues as:

  (31)

And the eigenvectors as: 

    (32)

Where µ is the reduced mass and  .

Fig. 7-a. The velocities of the sprung mass vs and the 
wheel vus as function of time for undamped system

Fig. 7-b. The velocities of the sprung mass vs and the 
wheel vus as function of time for damped system

Fig. 8-a. The displacements of the sprung mass zs and
 the wheel zus as function of time for undamped system

Fig. 8-b.The displacements of the sprung mass zs and 
the wheel zus as function of time for damped system 
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The solution gives two eigenvectors (normal mode 
shapes). The first normal mode shape shows that the 
two masses move in phase as a rigid body, and the sec-
ond normal mode shape shows that the two masses 
move out of phase with amplitude ratio of η.

The simulation results for velocity, displace-
ment, and normal force for values of: ms=4[kg], 
mus=0.4[kg],r=0.12[m], g=3.7[m/sec2], ks=5300[N/m], 
cs=25[N.sec/m] are shown in Figures 7-a&b, 8-a&b, 
and 9-a&b, respectively. 

And in order to see the relative motion between 
the two masses the displacement graph zs is shifted up 
by the physical dimension of the two masses (the thin-
ner upper blue curve), see Figure 8-a & b. 

5. Results and Discussion
From the simulation results we can conclude that 

the soil exponent n has a significant effect on the coef-
ficient kz, but this effect is significantly reduced in the 
magnitude of the normal force especially for the value 
of n=0.5. While the relative deviation from a straight 
line graph of the normal force Fz as function of sink-
age (The straight line that passes through the origin 
and the graphs’ intersecting point, see Figure 5) is 
very large. The graphs intersecting point shows that at 

a sinkage value equal to the wheel width the normal 
force has the same value for any soil exponent, which 
that the effect of the soil exponent n is cancelled. 

Therefore the soil reaction during sinkage may be 
considered as a nonlinear spring with constant coef-
ficient of stiffness kz and becomes linear for n=0.5. 

The interaction between the rigid wheel (unsprung 
mass) and soft soil has three stages. At each stage the 
normal force Fz is different. During the first stage the 
wheel penetrates into the soft soil until it reaches its 
maximum sinkage at zero velocity, it is between point 
1 & point 2 on the graph, see Figure 8-a. At this stage 
the normal force is been calculated according to the 
expression in Equation (23). The second stage starts 
at maximum sinkage and ends at the instant of pulling 
out leaving the soil, and it is between point 2 & point 3 
on Figure 8-a. The wheel velocity at stage two is zero 
and the normal force is the reaction force to all other 
forces which act on the wheel. The third stage starts 
when the sprung mass pulls out the unsprung mass 
(wheel) and then the wheel losses contact with the soil, 
it is between point 3 & point 4 on Figure 8-a. During 
the third stage the normal force is zero and the system 
starts to vibrate according to its two eigenvectors with 
an initial conditions equal to the motion parameters at 
the end of the second stage. 

It can be noticed that there is a significant effect 
of the rigid body mode at the start of stage three. This 
mode is useful in pulling out the wheel from the soil. 

At the first stage the penetration is linearly increases 
with time as shown in Figure 8, and the penetration 
speed into the soil is affected by the normal projection 
of soil stresses on the wheel’s rim, and the transmitted 
forces caused by the sprung mass. The transmitted 
forces act on the wheel toward down in the direction 
of the wheel’s motion. 

The first fall makes the soil more compact, as a 
result the soil parameters are changed. Therefore it 
is harder to penetrate into the soil and then it harder 
to pull out compared to the first fall. In case that the 
wheel does not pull out leads to a continuous vibration 
of the sprung mass about its final position. 
 Adding damping to the system reduces the vibration 
of both sprung mass, and unsprung mass (wheel) 
significantly. Also the maximum value of the force in 
the second sinkage is much less than the first one. The 
damper is very essential if the fall occurs on earth as 
it is expected, but in space it is preferred not to have 
damper and let the sprung masses vibrates which may 
help in pulling out the wheel from the soil. 

The normal force during sinkage and contact with 
soil exists during very short time and it has a geometric 
shape resemblance to any impulsive force during 
collision of two objects. Therefore a future work is 
to replace the sinkage force with an impulsive force 
applied to the wheel during contact with a soft soil.
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Fig. 9-a. The normal force as function of time during the 
two interactions for undamped system

Figure 9-b. The normal force as function of time during 
the two interactions for damped system
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