PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a testing station for empirical verification of the algebraic model of dry ice piston extrusion

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient use of resources is a very important consideration for every production process, especially where waste materials are used as raw materials. One example of these kinds of processes is dry ice extrusion. Based on the subject literature, it can be observed that the machines available in the market that are used to compress dry ice are characterized by high working force value. This leads to low efficiency of resource consumption, in regards to both electrical energy and carbon dioxide. This paper presents a proposed design of a test stand used for measuring compression force as a function of piston displacement in the course of the dry ice extrusion. The first part of the article presents the testing methodology and test stand design. The second part presents the results of measurement of compression force as a function of piston displacement with three different die types. The results of the study allowed to establish the difference between the values of the measured limit force and the values calculated with an analytical model. The test stand design and the results presented in this paper are important for further research and development works in the area of efficient extrusion and compaction of dry ice.
Słowa kluczowe
Rocznik
Strony
107--112
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 61-138 Poznan, Poland
Bibliografia
  • 1. Arendarski J (2006), Measurement uncertainty (in Polish), Warsaw University of Technology Publisher.
  • 2. Dudziak M, Kołodziej A, Domek G., et al. (2017), Multi-angularity – identification of parameters and compatibility conditions of the axisymmetric connection with form deviations Procedia Engineering, vol. 177 431-438.
  • 3. Dong S., Song B., Hansz B., et al. (2012), Modeling of dry ice blasting and its application in thermal spray, Material Research Innovations, Vol. 16, 61-66.
  • 4. Dong S., Song B., Hansz B., et al., (2013), Combination Effect of Dry-Ice Blasting and Substrate Preheating on Plasma-Sprayed CoNiCrAlY Splats, Journal of Thermal Spray Technology, Vol. 22, No. 1, https://doi.org/10.1007/s11666-012-9845-z.
  • 5. Dzido A., Krawczyk P., Kurkus-Gruszecka M., et al. (2019) Analysis of the Liquid Natural Gas Energy Storage basing on the mathematical model, Energy Procedia, Vol. 159, 231-236.
  • 6. Dzido A., Krawczyk P., Kurkus-Gruszecka M. (2019), Numerical Analysis of Dry Ice Blasting Convergent-Divergent Supersonic Nozzle, Energies, Vol. 12, 4787.
  • 7. Dzido A., Krawczyk., Badyda K., Chondrokostas, (2021), Operational parameters impact on the performance of dry-ice blasting nozzle, Energy, Vol. 214, https://doi.org/10.1016/j.energy. 2020.118847.
  • 8. Górecki J., Malujda I., Talaśka K., et al. (2015) Static compression tests of concentrated crystallized carbon dioxide, Applied Mechanics and Materials, Vol. 816, 490-495.
  • 9. Górecki J., Malujda I., Talaśka K., et al. (2017), Dry ice compaction in piston extrusion process, Acta mechanica et automatic, Vol. 11, no. 4, 313-316.
  • 10. Górecki J., Malujda I., Talaśka K., et al. (2017), Influence of the compression length on the ultimate stress in the process of mechanical agglomeration of dry ice, Procedia Engineering, vol. 177, 363-368.
  • 11. Górecki J., Malujda I., Wilczyński D. (2019), The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice, Matec Web of Conferences, Vol.254, 05001.
  • 12. Górecki J., Malujda I., Wilczyński D., Wojtkiak D. (2019), Influence of the face surface shape of the piston on the limit value of compaction stress in the process of dry ice agglomeration, Matec Web of Conferences, Vol.254, 2019, 06001.
  • 13. Górecki J., (2020), Preliminary analysis of the sensitivity of the algebraic dry ice agglomeration model using multi-channel dies to change their geometrical parameters, IOP Conference Series: Materials Science and Engineering, 776, 012030.
  • 14. Górecki J., Fierek A., Talaśka K., et al., (2020), The influence of the limit stress value on the sublimation rate during the dry ice densification process, IOP Conference Series: Materials Science and Engineering, 776, 012072.
  • 15. Górecki J., Talaśka K., Wałęsa K., et al., (2020), Mathematical Model Describing the Influence of Geometrical Parameters of Multichannel Dies on the Limit Force of Dry Ice Extrusion Process, Materials, vol. 13(15), 3317-1 – 3317-11.
  • 16. Ishiguro M., Dan K., Kaneko S., et al. (2020) Snow Consolidation Properties by using Mechanical Press Machine, Journal of the Institute of Industrial Applications Engineers, Vol. 7(3), 83-90.
  • 17. Kukla M, Górecki J, Malujda I, et al. (2017) The determination of mechanical properties of magnetorheological elastomers (MREs) Procedia Engineering, vol. 177 324-330.
  • 18. Li M., Liu W., Qing X., et al. (2016), Feasibility study of a new approach to removal of paint coatings in remanufacturing, Journal of Materials Processing Technology, Vol. 234, 102-112.
  • 19. Liu Y., Calvert G., Hare C., et al. (2012), Size measurement of dry ice particles produced from liquid carbon dioxide, Journal of Aerosol Science, Vol. 48, 1-9.
  • 20. Liu Y., Hirama D., Matusaka S. (2017), Particle removal process during application of impinging dry ice jet, Powder Technology, 607-613.
  • 21. Liu Y., Maruyama H., Matsusaka S. (2010), Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide, Advanced Powder Technology, Vol. 21, 652-657.
  • 22. Malujda I., Wilczyński D., (2016) Mechanical Properties Investigation of Natural Polymers, Procedia Engineering vol. 136, 263-268.
  • 23. Masa V., Kuba P., Perilak D., Lokaj J., (2014), Decrease in Consumption of Compressed Air in Dry Ice Blasting Machine, Chemical Engineering Transactions, 39, 805-810, https://doi.org/10. 3303/CET1439135.
  • 24. Masa V., Kuba P. (2016), Efficient use of compressed air for dry ice blasting, Journal of Cleaner Production, Vol. 111, 76-84.
  • 25. Mazzoldi A., Hill T., Colls J. (2008), CO2 transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank, International Journal of Greenhouse Gas Control, Vol. 2, 210-218.
  • 26. Mikołajczak A., Krawczyk P., Stępień M., et al. (2018), Preliminary specification of the dry ice blasting converging-divergent nozzle parameters basing on the standard (analytical) methods, Rynek Energii, Vol. 4, 91-96.
  • 27. Muckenhaupt D., Zutzmann T., Rudek A., Russ G., (2019), An Experimental and Numerical Procedure for Energetic and Acoustic Optimization of Dry-ice Blasting Processes, Chemical Engineering Transactions, Vol. 74, 967-972, https://doi.org/10.3303/CET1974162
  • 28. Otto C., Zahn S., Rost F., et al. (2011), Physical Methods of cleaning And Disinfection of Surfaces, Food Engineering Review, Vol. 3, 171-188.
  • 29. Talaśka K., (2017), Analysis of the energy efficiency of the shredded wood material densification process Procedia Engineering 177 352-357.
  • 30. Spur G., Uhlmann E., Elbing F. (1999), Dry-ice blasting for cleaning: process, optimization and application, Wear, Vol. 233–235, 402–411.
  • 31. Uhlmann E., Kretzschmar M., Elbing F., et al. (2010), Deburring with CO2 Snow Blasting. In: J. Aurich, D. Dornfeld (eds) Burrs - Analysis, Control and Removal. Springer, Berlin, Heidelberg.
  • 32. Wałęsa K., Malujda I., Talaśka K. (2018), Butt welding of round drive belts, Acta Mechanica et Automatica, Vol. 12, no. 2, s. 115-126
  • 33. Wałęsa K., Malujda M., Górecki J., et al. (2019), The temperature distribution during heating in hot plate welding process, MATEC Web of Conferences, Vol. 254, 0233-1 - 02033-11.
  • 34. Wałęsa K., Malujda I., Wilczyński D. (2019), Shaping the parameters of cylindrical belt surface in the joint area, Acta Mechanica et Automatica, vol. 13, 255-261.
  • 35. Wałęsa K., Malujda I., Wilczyński D. (2020), Experimental research of the thermoplastic belt plasticizing process in the hot plate welding, IOP Conference Series: Materials Science and Engineering, 776, 012011.
  • 36. Wałęsa K., Malujda I., Górecki J. (2020), Experimental research of the mechanical properties of the round drive belts made of thermoplastic elastomer, IOP Conference Series: Materials Science and Engineering, 776, 012107.
  • 37. Wilczyński D., Talaśka K., Malujda I., et al. (2018) Experimental research on biomass cutting process MATEC Web of Conferences vol. 157 07016.
  • 38. Wilczyński D, Berdychowski M, Wojtkowiak D, et al. (2019) Experimental and numerical tests of the compaction process of loose material in the form of sawdust, MATEC Web of Conferences, vol. 254 02042.
  • 39. Wilczyński D., Malujda I., Górecki J. et al. (2019) Experimental research on the process of cutting transport belts, MATEC Web of Conferences, vol. 254 05014.
  • 40. Wilczyński D., Malujda I., Górecki J., et al., (2019) Research on the process of biomass compaction in the form of straw, MATEC Web of Conferences, vol. 254 05015.
  • 41. Wilczyński D., Wałęsa K., Berdychowski M., et al., (2020) Biomass cutting tests to determine the lowest value of the process force, IOP Conf. Series: Materials Science and Engineering vol. 776 012014.
  • 42. Witte A., Bobal M., David R., et al. (2017), Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment, LWT - Food Science and Technology, Vol. 75, 735-741.
  • 43. Wojtkowiak D., Talaśka K., Malujda I., et al. (2018), Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch. The International Journal of Advanced Manufacturing Technology https://doi.org/10. 1007/s00170-018-2381-3.
  • 44. Wojtkowiak D. and Talaśka K. (2019) Determination of the effective geometrical features of the piercing punch for polymer composite belts The International Journal of Advanced Manufacturing Technology, vol. 104, 315-332.
  • 45. Wojtkowiak D., Talaśka K., Wilczyński D., et al. (2021), Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model. Energies, Vol. 14, No. 1, http://dx.doi.org/10.3390/en14020317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a785546-32be-4454-a5ed-4a7fcf9be434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.