PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The possibility of using waste materials as raw materials for the production of geopolymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article shows the possibility of using industrial and mining waste for creating new eco-friendly materials – geopolymers. The main objective of the article is to analyze the possibilities of using new composite received from waste materials from mining industry in practical applications, especially in construction industry. The article presents benefits and potential threats for using wastes for production of geopolymers from gangue, waste from iron processing, waste from copper mining and processing, waste from chromium processing and so-called red mud from aluminum production. Research methods applied in the article are: critical analysis of literature sources, including comparison new material with other materials used in similar applications.
Twórcy
  • Institute of Material Engineering, Faculty of Material Engineering and Physics, Cracov University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
  • Institute of Material Engineering, Faculty of Material Engineering and Physics, Cracov University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
  • [1] Eurostat, waste statistic [https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics - access 20.04.2020]
  • [2] Państwowy Instytut Geologiczny, 2019 Odpady wydobywcze: [http://geoportal.pgi.gov.pl/odpady – access 20.04.2020]
  • [3] Galhano C, Lamas P, Seixas D. Use of Industrial Waste for the Optimization of Ceramic Construction Materials in RICON19 - REMINE International Conference on Valorization of mining and industrial wastes into construction materials by alkali-activation. KnE Engineering (2020), 36-48.
  • [4] Sedira N, Castro-Gomes J. Strength Development and Pore Structure Characterisation of Binary Alkaliactivated Binder Based on Tungsten Mining Waste in RICON19 - REMINE International Conference on Valorization of mining and industrial wastes into construction materials by alkali-activation. KnE Engineering (2020), 73-85.
  • [5] http://www.fao.org/worldfoodsituation/csdb/en/ [access 05.06]
  • [6] Singh B. 13-Rice husk ash Waste and Supplementary Cementitious Materials in Concrete Characterisation, Properties and Applications. Woodhead Publishing Series in Civil and Structural Engineering (2018), 417-460.
  • [7] https://www.biosil.vn/single-post/Goodyear-using-rice-husk-ash-in-tyre-manufacturing [access 05.06.2020]
  • [8] Davidovits J, Davidovics M. Geopolymer: Room-temperature ceramic matrix for composites. In: Proceedings of 12th Annual Conference on Composites and Advanced Ceramic Materials, USA. (1988), pp. 835-842.
  • [9] Davidovits R, Pelegris Ch, Davidovits J. Standardized Method in Testing Commercial Metakaolins for Geopolymer Formulations, Technical Paper #26-MK-testing. Geopolymer Institute Library (2019).
  • [10] Król MR, Błaszczyńskl TZ, Geopolimery w budownictwie. Izolacje. 18 (2013), 38-43.
  • [11] Geng J, Zhou M, Li Y, Chen Y, Han Y, Wan S, Zhou X, Hou H. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Construction and Building Materials. 153 (2017), 185-192.
  • [12] Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cement and Concrete Research 78 (2015), 110-125.
  • [13] Heo UH, Sankar K, Kriven WM, Musil SS. Rice husk ash as a silica source in geopolymer formulation, in: V, Kriven WM, Zhou D, Moon K, Hwang T, Wang J, Lewinssohn C, Zhou Y. (Eds.) Developments in Strategic Materials and Computational Design, Ceramic Engineering and Science Proceedings 38 (2015), 87-102.
  • [14] Mikuła J, Łach M. Potencjalne zastosowania glinokrzemianów pochodzenia wulkanicznego Czasopismo Techniczne 8 (2012), 111-124.
  • [15] Zhang YI, Ling TC. Reactivity activation of waste coal gangue and its impact on the properties of cementbased materials - A review. Construction and Building Materials 234 (2020), 117424.
  • [16] Klojzy-Karczmarczyk B, Mazurek J. Propozycje rozszerzenia działań celem zagospodarowania materiałów odpadowych z górnictwa węgla kamiennego. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 98 (2017), 151-166.
  • [17] Li C, Wanb J, Suna H, Li L. Investigation on the activation of coal gangue by a new compound method. Journal of Hazardous Materials 179 (2010), 515-520.
  • [18] Sedira N, Castro-Gomes J, Kastiukas G, Zhou X, Vargas A. A Review on Mineral Waste for Chemical-Activated Binders: Mineralogical and Chemical Characteristics. Mining Science 24 (2017), 29-58.
  • [19] Huang G, Ji Y, Li J, Hou Z, Dong Z. Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Construction and Building Materials 166 (2018), 760-768.
  • [20] Zhang W, Dong C, Huang P, Sun Q, Li M, Chai J. Experimental Study on the Characteristics of Activated Coal Gangue and Coal Gangue-Based Geopolymer. Energies 13 (2020), 2504.
  • [21] Li J, Wang J. Comprehensive utilization and environmental risks of coal gangue: A review. Journal Cleaner Production 239 (2019) 117946.
  • [22] do Carmo e Silva Defaveri K, Figueiredo dos Santos L, Franco de Carvalho JM, Fiorotti Peixoto RA, Brigolini GJ. Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties. Construction and Building Materials 220 (2019), 375-385.
  • [23] Duan P, Yan C, Zhou W, Ren D, Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater. Ceramics International, 42 (2016), 13507-13518.
  • [24] Das P, Matcha B, Hossiney N, Mohan MK, Roy A, Kumar A. Utilization of Iron Ore Mines Waste as Civil Construction Material through Geopolymer Reactions, Geopolymers and Other Geosynthetics. Mazen Alshaaer and Han-Yong Jeon, IntechOpen (2018).
  • [25] Ahmari S, Zhang L, Pro duction of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials 29 (2012), 323-331.
  • [26] Manjarrez L, Nikvar-Hassani A, Shadnia R, Zhang L, Experimental Study of Geopolymer Binder Synthesized with Copper Mine Tailings and Low-Calcium Copper Slag. Journal of Materials in Civil Engineering 31 (2019).
  • [27] Huang X, Huang T, Li S, Muhammad F, Xu G, Zhao Z, Yu L, Yan Y, Li D, Jiao B. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag- based geopolymer, Ceramics International 42 (2016), 9538-9549.
  • [28] Sun T, Chen J, Lei X, Zhou C. Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. Journal of Environmental Chemical Engineering 2 (2014), 304-309.
  • [29] Huang X, Muhammad F, Yu L, Jiao B, Shiau YC, Li D. Reduction/immobilization of chromite ore processing residue using composite materials based geopolymer coupled with zero-valent iron. Ceramics International 44 (2018), 3454-3463.
  • [30] Burduhos Nergis DD, Abdullah MMAB, Vizureanu P, Tahir MFM. Geopolymers and Their Uses: Review. IOP Conference Series: Materials Science and Engineering 374 (2018), 012019.
  • [31] Liu Y, Lina C, Wu Y. Characterisation of red mude derived from a combined Bayer Profess and bauxite calcination method. Journal of Hazardous Materials 146 (2007), 255-261.
  • [32] Jamieson EJ, Penna B, van Riessen A, Nikraz H. The development of Bayer derived geopolymers as artificial aggregates. Hydrometallurgy 170 (2017), 74-81.
  • [33] Ye J, Zhang W, Shi D. Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Construction and Building Materials 69 (2014), 41-48.
  • [34] Geng J, Zhou M, Zhang T, Wang W, Wang T, Zhou X, Wang X, Hou H. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation. Materials and Structures 50 (2017), 109.
  • [35] Koshy N, Dondrob K, Hu L, Wen Q, Meegoda JN. Synthesis and characterization of eopolymers derived from coal gangue, fly ash and red mud. Construction and Building Materials. 206 (2019), 287-296.
  • [36] Stefańska A, Łach M, Mikuła J. Geopolimery jako przykład możliwości zagospodarowania odpadów. Nowoczesne technologie XXI w. - przegląd, trendy i badania. Tom 1. Wydawnictwo Naukowe Tygiel (2019), 24-34.
  • [37] Yunsheng Z, Wei S, Qianli C, Lin C. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials 143 (2017), 206-213.
  • [38] Mierzwiński D, Łach M, Mikuła J. Alkaliczna obróbka i immobilizacja odpadów wtórnych ze spalania odpadów. Inżynieria Ekologiczna, 18 (2017), 102-108.
  • [39] Stępień M, Białecka B, Inwentaryzacja innowacyjnych technologii odzysku odpadów energetycznych (Stocktaking of innovative energy waste recyckling technologies). Systemy Wspomagania w Inżynierii Produkcji 6 (2017), 108-123.
  • [40] Łach M, Mierzwiński D, Korniejenko K, Stanek A, Mikuła J. The behaviour of alkali activated materials based on calcium clay at elevated temperatures. MATEC Web of Conferences 247 (2018), 00054.
  • [41] Palomo A, Krivenko P, Garcia-Lodeiro I, Kavalerova E, Maltseva O, Fernandez-Jimenez A. A review on alkaline activation: new analytical perspectives. Materiales de Construccion 64 (2014), e022.
  • [42] Assaedi H, Shaikh FUA, Low IM Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites. Journal of Asian Ceramic Societies 5 (2017), 62-70.
  • [43] Davidovits J. Environmentally Driven Geopolymer Cement Applications. Geopolymer 2002 Conference, (2002) Melbourne, Australia.
  • [44] Mikuła J, Korniejenko K. (Eds.) Innovative, cost effective and eco-friendly fibre-based materials for construction industry (Cracow, Wyd. Politechniki Krak.) 2015.
  • [45] Sikapizye E, Habanyama A. Synthesis and characterization of hemp and flax fiber reinforced geopolymer composites. Journal of Chemical Engineering and Materials Science 11 (2020), 10-23.
  • [46] https://ec.europa.eu/growth/sectors/raw-materials/eip en - access 20.08.2020]
  • [47] Yao Y, Hu M, Di Maio F, Cucurachi S. Life cycle assessment of 3D printing geo-polymer concrete An ex-ante study. Journal of Industrial Ecology 24 (2020), 116-127.
  • [48] Bumanis G, Vitola L, Pundiene I, Sinka M, Bajare D. Gypsum, Geopolymers, and Starch-Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment. Sustainability 12 (2020), 5666.
  • [49] https://www.icis.com/explore/commodities/chemicals/caustic-soda/ - access 20.08.2020]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a77cfee-4c8b-4903-a06c-840ea26c5e51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.