
Scientific Issues

Jan Długosz University

in Częstochowa

Mathematics XVII (2012)

69–76

MODULAR TECHNIQUE OF HIGH-SPEED PARALLEL

COMPUTING ON THE SETS OF POLYNOMIALS

MIKHAIL SELYANINOV

Abstract

In this paper we present the modular computing structures (MCS) defined on the set of polynomials

over finite rings of integers. This article is a continuation of research on the development of modular

number systems (MNS) on arbitrary mathematical structures such as finite groups, rings and Galois

fields [1-7].

1. Introduction

At the present time in the modern computer algebra, digital signal process-

ing, coding theory, cryptography, many others fields of science and engineering

the polynomial operations are of great importance. Therefore, studies on the

development of modular technique of information processing in the direction

of optimization the parallel computing structures defined on the polynomial

ranges are of the utmost significance.

The developed technique of minimal redundant modular codification of

ranges with vectorial structure is based on the introduction of minimal re-

dundancy at a lower level (a level of real components) [1-3]. This universal

and effective basis for synthesis of computer arithmetic procedures for the

algebraic systems with polynomial carriers.
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The technique of interval-modular forms used for the real components of el-

ements of coded ranges as well as the calculated relations for the interval-index

characteristics of integer real numbers are the key elements of the proposed

methodology [2, 3]. This allows us to create on the basis of the real minimal

redundant modular systems the required variants of computer arithmetic for

polynomial modular number systems under consideration.

2. Some theoretical foundations

Let us consider the set Z[x] of all polynomials of finite degree with coeffi-

cients in the ring Z of integers and the variable x. This set is a commutative

ring with unity e(x) = 1 and zero 0(x).

Definition 1. If the set of divisors of some element f(x) of natural degree

from the ring Z[x] is confined to polynomials of the form Cd(x) such that

f(x) = Cd(x), where C ∈ Z, then the polynomial f(x) is called irreducible.

Definition 2. The common divisor d(x) of polynomials p1(x), p2(x), . . . , pn(x),

(n ≥ 1), divisible by any other of their common divisor is called the least com-

mon divisor of polynomials and is denoted by

d(x) = (p1(x), p2(x), . . . , pn(x)) .

In the case d(x) = 1, the polynomials p1(x), p2(x), . . . , pn(x) are called pair-

wise coprime.

Definition 3. The polynomial from Z[x] with unitary coefficient at the high-

order degree of x is called the normalized polynomial.

Following the offered technique of constructing a MNS [3] in this case first

of all requires the creation of the complete set of residues (CSR) for the factor

ring Z[x]/(pl(x)) (l = 1, 2, · · · , n; n ≥ 2) with respect to selected pairwise

relatively prime polynomial modules p1(x), p2(x), . . . , pn(x) generating in

Z[x] principal ideals (p1(x)), (p2(x)), . . . , (pn(x)). At the same time the

governing equivalence relation is actually given by Euclidean lemma [1, 9]

formulated as follows.

Lemma 1. For any polynomial f(x) in Z[x] and polynomial modules p(x)

when deg p(x) ≥ 1 there are unique elements q(x) and r(x) such that

f(x) = q(x) · p(x) + r(x) (deg r(x) < deg p(x)). (1)
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3. Polynomial modular number system

As in computer applications the finite mathematical structures are used,

then for the construction of polynomial MNS (PMNS) instead of the ring Z[x]

the ranges of the form

Z
s
m[x] =







A(x) =
s

∑

j=0

ajx
j | (a0, a1, . . . , as−1) ∈ (Zm × Zm × . . .× Zm),







,

are used, where m and s are the fixed positive integers; m ≥ 2. The cardinality

of the set Z
s
m[x] is equal to N = |Zs

m[x]| = ms.

Let Zm be the set of all polynomials over the ring Z, and p(x) be any

element of sth degree from Zm. Then according to Euclidean lemma (which is

valid also for the ring Zm) the set Z
s
m[x] coincides with the set of all residual

r(x) of division of f(x) by p(x) (see (1)), while f(x) represents every element

from the set Zm. Thus, the ring Z
s
m[x] is a CSR modulo p(x). For the

CSR of this type a notation 〈·〉p(x) is used. The operation modulo p(x) over

the polynomial f(x), is designated as 〈f(x)〉p(x). It is also quite clear that

any two rings 〈·〉p(x) and 〈·〉g(x) modulo p(x) and g(x) of the same degree

(p(x), g(x) ∈ Z
s
m[x]), deg p(x) = deg g(x), respectively, are automorphic (i.e.

are isomorphic and have the same carrier).

On this basis, in the general case the PMNS with pairwise relatively prime

polynomial modules (p1(x), p2(x), . . . , pn(x)) is defined as an algebraic system

SPMNS =

=
〈

Zm, 〈·〉P (x), 〈·〉p1(x), 〈·〉p2(x) . . . 〈·〉pn(x); (+,+, . . . ,+), (·, ·, . . . , ·)
〉

, (2)

where P (x) =
n
∏

l=1

pl(x).

The isomorphism φ : P (x) → p1(x) × p2(x) × . . . × pn(x) defining the

PMNS establishes a one-to-one correspondence between the polynomial A(x)

from the range P (x) and the polynomial modular code

(a1(x), a2(x), . . . , an(x))

where the l-th component is the residual al(x) = 〈A(x)〉pl(x) of division of

A(x) by a module pl(x) (l = 1, 2, . . . , n). The ring operations in the PMNS
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over any two polynomials

A(x) = (a1(x), a2(x), . . . , an(x)) and B(x) = (b1(x), b2(x), . . . , bn(x))

are naturally executed independently on each of residues, i.e. according to the

rule

〈A(x) ◦B(x)〉 =

=
(

〈a1(x) ◦ b1(x)〉p1(x), 〈a2(x) ◦ b2(x)〉p2(x), . . . , 〈an(x) ◦ bn(x)〉pn(x)
)

, (3)

where ◦ ∈ {+, ·}.

As long as in the PMNS all operations (both modular and non-modular)

are performed in the ring Zm, and this ring is included in the conditional

notation (2). This ring is called the scalar range or the numeric range of

the PMNS. It follows from formula (3) that the efficiency level of the PMNS

arithmetic depends significantly on the degrees deg pl(x) of modules pl(x),

and its analytical form, on the one hand, and on the number system in which

calculation over polynomial residuals in the ring Zm are performed, on the

other hand. Due to the modular structure of these calculations it is quite

natural to use the real MNS with the modules m1,m2, . . . ,mk for encoding

and processing of elements from the scalar range Zm [2, 3]. With such an

approach the parameter m is equal to Mk =
k
∏

i=1
mi, i.e. the ring

ZMk
= {0, 1, . . . ,Mk − 1}

is used as a numeric range of the PMNS.

Definition 4. The PMNS with modular coding of elements of scalar range

is called the polynomial-numerical or polynomial-scalar MNS with the mod-

ules (p1(x), p2(x), . . . , pn(x)) ,m1,m2, . . . ,mk and is denoted by the symbolic

notation 〈〈·〉P (x); | · |Mk
〉.

As for the problem of a choice of polynomial modules

(p1(x), p2(x), . . . , pn(x))

it is clear that the normalized polynomials of the first degree pl(x) = x − rl,

(rl ∈ ZMk
l = 1, 2, . . . , n) are the most appropriate. At the same time for
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practical applications, for example, in the digital signal processing, digital

communications or coding theory the polynomial modules for which

P (x) =
n
∏

l=1

pl(x)

is of the form xn± 1 are of particular interest. It was shown in several studies

that the indicated restrictions to the choice of modules PMNS are compatible.

In the rings ZMk
the polynomials xn ± 1 admit a factorization of the form

xn ± 1 =
n
∏

l=1

(x− rl).

4. Minimal redundant polynomial modular number system

The principle of minimal redundant modular coding assumes that the set

Z
−

2M = | · |−2M = {−M,−M + 1, . . . ,M − 1}

(M =
k−1
∏

i=0
mi, m0 is the auxiliary natural module) is used as a scalar range of

the PMNS [2, 3].

Definition 5. The PMNS with minimal redundant modular coding of the ele-

ments of a scalar range is called the minimal redundant polynomial-numerical

or polynomial-scalar MNS with the modules

(p1(x), p2(x), . . . , pn(x)),m1,m2, . . . ,mk

and is denoted by the symbolic notation
〈

〈·〉P (x); | · |
−

2M

〉

.

Let us consider the minimal redundant polynomial-scalar MNS (PSMNS)

with modules m1, m2, . . ., mk and pl(x) = x − rl (rl ∈ Z
−

2M ) such that

P (x) = xn − 1 or P (x) = xn + 1. In accordance with the stated above, an

arbitrary polynomial A(x) ∈ 〈·〉P (x) in minimal redundant PSMNS is encoded

by a set of residues

(A1,1, A1,2, . . . , A1,k; A2,1, A2,2, . . . , A2,k; . . . ; An,1, An,2, . . . , An,k) , (4)

where Al,i = |Al|mi
; Al = 〈A(x)〉pl(x) is a residue of division A(x) by a module

pl(x) = x− rl which taking into account the Bezout theorem [8], is calculated

by the formula Al = |A(rl)|Mk
; l = 1, 2, . . . , n; i = 1, 2, . . . , k.
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Decoding mapping for minimal redundant PSMNS 〈〈·〉P (x); | · |
−

2M 〉 assign-

ing to each code of the form (4) a polynomial A(x) =
n−1
∑

ν=0
aνx

ν from the range

〈·〉P (x) is implemented by means of the following theorem.

Theorem 1. If pl(x) = x − rl (rl ∈ ZMk
), P (x) =

n
∏

l=1

pl(x) = xn ± 1 and

(n,Mk) = 1, then the coefficients of the polynomial A(x) =
n−1
∑

ν=0
aνx

ν ∈ 〈·〉P (x)

corresponding to a minimal redundant position-scalar modular code (4) are

defined by the following relations

aν =
k−1
∑

i=1

Mi,k−1|M
−1
i,k−1|aν |mi

|mi
+ I(aν)Mk−1, (5)

|aν |mi
=

∣

∣

∣

∣

∣

n−1
n
∑

l=1

Al,i r
−ν
l

∣

∣

∣

∣

∣

mi

, (6)

where I(aν) is an interval index of the number aν calculated in accordance

with the relations given in the article [2].

The validity of the use of interval-modular form (5) to restore the values of

the polynomial coefficients aν on the basis of their modular code

(|aν |m1
, |aν |m2

, . . . , |aν |mk
)

is guaranteed by the minimum redundancy of the encoding elements of a scalar

range Z
−

2M . As for the formula (6), it follows from the Chinese reminder

theorem [1, 9] which for the PMNS with modules p1(x), p2(x), . . . , pn(x)

gives

A(x) =

〈

n
∑

l=1

Pl(x)
〈

Pl(x)
−1A(x)

〉

pl(x)

〉

P (x)

=

=

n
∑

l=1

Pl(x)
〈

Pl(x)
−1Al

〉

pl(x)
, (7)

where Pl(x) = P (x)/pl(x) = (xn ± 1)/(x− rl).

The ring operations in the PSMNS are performed component-wise. In ac-

cordance with (3), the operation ◦ ∈ {+, ·} over any two polynomials A(x)

and B(x) is executed by the rule
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(A1,1, A1,2, . . . , A1,k; A2,1, A2,2, . . . , A2,k; . . . ; An,1, An,2, . . . , An,k)◦

◦(B1, 1, B1,2, . . . , B1,k; B2,1, B2,2, . . . , B2,k; . . . ; Bn,1, Bn,2, . . . , Bn,k) =

= ( |A1,1 ◦ B1,1|m1
, |A1,2 ◦ B1,2|m2

, . . . , |A1,k ◦ B1,k|mk
;

|A2,1 ◦ B2,1|m1
, |A2,2 ◦ B2,2|m2

, . . . , |A2,k ◦ B2,k|mk
; . . .

|An,1 ◦ Bn,1|m1
, |An,2 ◦ Bn,2|m2

, . . . , |An,k ◦ Bn,k|mk
), (8)

where Al,i = |A(rl)|mi
and Bl,i = |B(rl)|mi

are the digits of polynomial-scalar

modular codes of the operands A(x) and B(x), respectively (see (4)).

The unique possibility to calculate the sum, difference and especially the

product of two polynomials in accordance with (8) in one clock tick is one

of the main advantages of the PSMNS. Thus, in this system both the addi-

tion and the multiplication of any two polynomials modulo P (x) = xn ± 1 for

their implementation require n real additions and multiplications, respectively,

which can also execute in parallel. In contrast, in the case of traditional arith-

metic the computational complexity of the two polynomials multiplication in

the ring 〈·〉P (x) amounts to n(n−1) real additions and n2 real multiplications.

The minimal redundant PMNS have all advantages of the classical PMNS.

In addition, these algebraic systems are characterized by more simple com-

puter arithmetic. The use of minimal redundant coding on the lower level

allows us to increase the efficiency of computer arithmetic due to optimiza-

tion of the non-modular procedures [1]. Moreover, it should be noted that

on the basis of technique for constructing the MNS [2, 3] the minimal redun-

dant PSMNS with a range of complex scalars can be defined. In this case the

efficiency gain is even more impressive than in the case of real PSMNS.
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