PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biochemical mechanisms of drought resistance in soft wheat under modeling of water deficiency and effects of seed treatment with metabolically active substances

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biochemiczne mechanizmy odporności na suszę nasion pszenicy jarej przy modelowanym niedoborze wody oraz aplikacji substancji metabolicznie czynnych
Języki publikacji
EN
Abstrakty
EN
Water deficiency is one of the major factors that limit crop production among those causing plant stress. Therefore, the study aimed to investigate the effect of metabolically active compounds on reducing the negative effects of drought and stimulating physiological and biochemical processes in the spring wheat variety Provintsialka. In the study, wheat seeds were soaked in solutions of substances: PEG-6000 (EG); PEG-6000 + vitamin E (PEG+E); PEG-6000 + ubiquinone-10 (PEG+Q); PEG-6000 + methionine (PEG+M); PEG-6000 + parahydroxybenzoic acid (PEG+P); PEG-6000 + MgSO4 (PEG+Mg); PEG6000 + vitamin E + ubiquinone-10 (PEG+EQ); PEG-6000 + vitamin E + methionine + parahydroxybenzoic acid (PEG+EMP); PEG-6000 + vitamin E + methionine + parahydroxybenzoic acid + MgSO4 (PEG+EMPMg). The wheat seeds were then poured into a 12% PEG solution to simulate the water deficit and then germinated. The study determined the activities of ascorbate peroxidase and catalase, as well as the content of ascorbic acid and glutathione. It was found that the treatment of spring wheat seeds of the Provintsialka variety with metabolically active compounds and their combinations affected the activity of antioxidant protection enzymes in water-deficient conditions. Treatment of seeds with MgSO4 solution most effectively reduces catalase activity compared to the indicators of seedlings whose seeds were in simulated drought conditions. The treatment of wheat seeds with vitamin E most effectively stimulated the activity of ascorbate peroxidase, increasing it by 65.5% compared to the control and by 2.4% relative to the PEG treated seedlings. A decrease in the activity of catalase correlates with an increase in the activity of ascorbate peroxidase and indicates the compensatory effect of the enzymes of the antioxidant system. The treatment of wheat seeds with ubiquinone-10 (PEG+Q) most effectively increased the ascorbate content in seedlings by 46.3% compared to seedlings whose seeds were in water deficit conditions. An increase in the ascorbate content in wheat seedlings was also noted when wheat seeds were treated with EMP (PEG+EMP) and EMPMg (PEG+EMPMg). The highest levels of glutathione in drought-stressed seedlings were observed in those treated with vitamin E and EMP (PEG+EMP), exceeding control levels by 31.4% and 30.7%, respectively, and PEG-treated seedlings by 59.9% and 59.2%. This confirms the promising use of metabolically active substances for plant adaptation under conditions of slow water flow.
PL
Niedobór wody jest jednym z najistotniejszych czynników stresowych ograniczających produkcję roślinną. Celem badań była ocena wpływu związków aktywnych metabolicznie na łagodzenie skutków suszy oraz stymulację procesów fizjologicznych i biochemicznych w pszenicy jarej odmiany Provintsialka. W eksperymencie nasiona pszenicy moczono w roztworach zawierających różne substancje: PEG-6000 (PEG); PEG-6000 z dodatkiem witaminy E (PEG+E); PEG-6000 z ubichinonem-10 (PEG+Q); PEG-6000 z metioniną (PEG+M); PEG-6000 z kwasem parahydroksybenzoesowym (PEG+P); PEG-6000 z siarczanem magnezu (PEG+Mg); PEG-6000 z witaminą E i ubichinonem-10 (PEG+EQ); PEG-6000 z witaminą E, metioniną i kwasem parahydroksybenzoesowym (PEG+EMP); PEG-6000 z witaminą E, metioniną, kwasem parahydroksybenzoesowym i siarczanem magnezu (PEG+EMPMg). Następnie nasiona poddano działaniu 12% roztworu PEG, symulując deficyt wody, po czym przeprowadzono proces kiełkowania. W badaniu analizowano aktywność peroksydazy askorbinianowej i katalazy oraz zawartość kwasu askorbinianowego i glutationu. Stwierdzono, że traktowanie nasion pszenicy związkami aktywnymi metabolicznie oraz ich kombinacjami wpływa na aktywność enzymów antyoksydacyjnych w siewkach w warunkach deficytu wody. Najsilniejsze obniżenie aktywności katalazy zaobserwowano po zastosowaniu roztworu MgSO4, w porównaniu z siewkami poddanymi symulowanej suszy. Najsilniejszą aktywację aktywności peroksydazy askorbinianowej uzyskano po zastosowaniu witaminy E (PEG+E), co skutkowało wzrostem o 65,5% względem kontroli oraz o 2,4% w porównaniu z siewkami poddanymi symulowanej suszy. Spadek aktywności katalazy korelował ze wzrostem aktywności peroksydazy askorbinianowej, co wskazuje na efekt kompensacyjny enzymów układu antyoksydacyjnego. Największy wzrost zawartości askorbinianu w siewkach (o 46,3% względem siewek z grupy deficytu wody) zaobserwowano po zastosowaniu ubichinonu10 (PEG+Q). Podobny efekt odnotowano po traktowaniu nasion kombinacjami EMP (PEG+EMP) oraz EMPMg (PEG+EMPMg). Najwyższy poziom glutationu w siewkach poddanych suszy uzyskano po zastosowaniu witaminy E (PEG+E) oraz EMP (PEG+EMP), przekraczając wartości kontrolne odpowiednio o 31,4% i 30,7%, a wartości uzyskane dla PEG - o 59,9% i 59,2%. Wyniki te potwierdzają potencjał substancji aktywnych metabolicznie w adaptacji roślin do warunków ograniczonego dostępu do wody.
Rocznik
Strony
15--31
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
  • Department of Biology, Nizhyn Mykola Gogol State University, Grafska 2, 16601, Nizhyn, Ukraine
  • Department of Biology, Nizhyn Mykola Gogol State University, Grafska 2, 16601, Nizhyn, Ukraine
  • Department of Biology, Nizhyn Mykola Gogol State University, Grafska 2, 16601, Nizhyn, Ukraine
  • Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
  • Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
autor
  • Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
Bibliografia
  • Aebi, H. (1984). Catalase in vitro. In Methods Enzymol.Academic press. Vol. 105, pp. 121-12.
  • Alam, M.M., Nahar, K., Hasanuzzaman, M. & Fujita M. (2014). Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports, 8, 279-293. DOI: 10.1007/s11816-014-0321-8.
  • Ali, Q., Javed, M., Haider, M., Habib, N., Rizwan, M., Perveen, R., Ali, S., Alyemeni, M., El-Serehy, H. & Al-Misned, F. (2020). α-Tocopherol foliar spray and translocation mediates growth, photosynthetic pigments, nutrient uptake, and oxidative defense in maize (Zea mays L.) under drought stress. Agronomy, 10(9), 1235. DOI: 10.3390/agronomy10091235.
  • Antonenko, K., Duma, M., Kreicberg, V. & Kunkulberga D. (2016). The influence of microelements selenium and cooper on the rye malt amylase activity and flour technological properties. Agronomy Research, 14(2), 1261-1270.
  • Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. DOI: 10.1007/s11099-013-0021-6.
  • Barkosky, R. R. & Einhellig, F. A. (2003). Allelopathic interference of plant water relationships by parahydroxybenzoic acid. Botanical Bulletin of Academia Sinica, 44, 53-58.
  • Bil’chuk, V. S., Rossikhina-Galycha, А. S. (2012). Ascorbate-glutathione protective system of maize plants under nickel ions action. Regulatory Mechanisms in Biosystems, 3(2), 9-14. DOI: 10.15421/021225.
  • Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C.W., Lazzarotto, F. & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. DOI: 10.1590/s1415-47572012000600016.
  • Chakrabarty, A., Aditya, M., Dey, N., Bani N. & Bhattacharjee, S. (2016). Antioxidant signaling and redox regulation in drought – and salinity-stressed plants. In M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt & L. S. Tran (Eds.) Drought Stress Tolerance in Plants. Vol 1, pp. 465-498. Springer, Cham. DOI: 10.1007/978-3-319-28899-4_20.
  • Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D. & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress response. Cellular and Molecular Life Sciences, 57, 779-795. DOI: 10.1007/s000180050041.
  • de Pinto, M. C. & de Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 55(408), 2559-2569. DOI: 10.1093/jxb/erh253.
  • Doliba, I. M., Volkov, R. A. & Panchuk, I. I. (2010). Method of catalase activity determination in plants. Physiology and Biochemistry Cultivated Plants, 42(6), 497-503.
  • Dziuba, V. & Kuchmenko, O. (2017). Modern aspects of ubiquinone functions in cell metabolism. Visnyk of the Lviv University. Series Biology, 75, 3-13.
  • FAO (Food and Agriculture Organization). Retrieved September, 25, 2024, from https://www.fao.org/faostat/en.
  • Farooq, M. A., Niazi, A. K., Akhtar, J., Farooq, M., Souri, Z., Karimi, N. & Rengel, Z. (2019). Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353-369. DOI: 10.1016/j.plaphy.2019.04.039.
  • Foyer, C. H. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. DOI: 10.1105/tpc. 105.033589.
  • Foyer, C. H. & Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytologist, 146(3), 359-388. DOI: 10.1046/j.1469-8137.2000.00667.x.
  • Foyer, C. H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, 11(4), 861-906. DOI: 10.1089/ars.2008.2177.
  • Foyer, C. H., Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2-18. DOI: 10.1104/pp.110.167569.
  • Foyer, C. H. & Shigeoka, S. (2011). Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiology, 155(1), 93–100. DOI: 10.1104/pp.110.166181.
  • Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. DOI: 10.1016/j.plaphy. 2010.08.016.
  • Guan, L. M. & Scandalios, J. G. (2000). Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biology and Medicine, 28(8), 1182-1190. DOI: 10.1016/S0891- 5849(00)00212-4.
  • Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. & Chen, K. (2015). Magnesium stress signaling in plant: just a beginning. Plant Signal Behavior, 3(10), e992287. DOI: 10.4161/15592324. 2014.992287.
  • Hasanuzzaman, M., Bhuyan, M., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. DOI: 10.3390/antiox8090384.
  • Hussain, S., Khan, F., Hussain, H. A. & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science 7, 116. DOI: 10.3389/fpls.2016.00116.
  • Ivanov, S., Konstantinova, T., Parvanova, D., Todorova, D., Djilianov, D. & Alexieva, V. (2001). Effect of high temperatures on the growth, free proline content and some antioxidants in tobacco plants. Comptes Rendus de l’Academie Bulgare des Sciences, 54(7), 71-74.
  • Jardim-Messeder, D., Caverzan, A., Balbinott, N., Menguer, P. K., Paiva, A. L. S., Lemos, M., Cunha, J. R., Gaeta, M.L., Costa, M., Zamocky, M., Saibo, N.J. M., Silveira, J. A. G., Margis, R. & MargisPinheiro, M. (2023). Stromal ascorbate peroxidase (OsAPX7) modulates drought stress tolerance in rice (Oryza sativa). Antioxidants, 12, 387. DOI: 10.3390/antiox12020387.
  • Kaur, E., Bhardwaj, R. D., Kaur, S., & Grewal, S. K. (2021). Drought stress-induced changes in redox metabolism of barley (Hordeum vulgare L.). Biologia Futura, 72, 347-358. DOI: 10.1007/s42977- 021-00084-2.
  • Kausar, R., Hossain, Z., Makino, T., & Komatsu, S. (2012). Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39, 10573-10579. DOI 10.1007/s11033-012-1945-9.
  • Khomenko, S. O., Kochmarskyi, V. S., Fedorenko, I. V. & Fedorenko, M. V. (2017). Drought tolerance and yield components of bread spring wheat collection samples in environments of Forest-Steppe of Ukraine. Myronivka Bulletin, 4, 79-87. DOI: 10.31073/mvis201704-07.
  • Kolesnikov, M., Gerasko, T., Paschenko, Yu., Pokoptseva, L., Onyschenko, O. & Kolesnikova, A. (2023). Effect of water deficit on maize seeds (Zea mays L.) during germination. Agronomy Research, 21(1), 156-174. DOI: 10.15159/AR.23.016.
  • Kolupaev, Yu. E. & Karpets, Yu. (2019). Active forms of oxygen, antioxidants and plant resistance to stressors. Kyiv: Logos.
  • Konturska, O. O. & Palladina, T. O. (2012). Аscorbate-glutathione cycle enzymes activity in Zea mays leaves under salinity and treatment by adaptogenic compounds. The Ukrainian Biochemical Journal, 84(6), 139-144.
  • Kurylenko, A. & Kuchmenko, O. (2022). The influence of presowing treatment on the content of lipid oxidation products, vitamins and the activity of antioxidant enzymes in winter rye grain. Notes in Current Biology, 1(1), 18-22.
  • Liu, M. & Lu, S. (2016). Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Frontiers in Plant Science, 7, 1898. DOI: 10.3389/fpls.2016.01898.
  • Martinez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C.A., Ren, W. & Yin, Y. (2017). The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 12(49), 2091-2098. DOI: 10.1007/s00726-017-2494-2.
  • Matthews, B.F. (1999). Lysine, Threonine, and Methionine Biosynthesis. In B. K. Singh (Ed.), Plant Amino Acids: Biochemistry and Biotechnology (Vol. 6(11), pp. 205-225). New York: Marcel Dekker Inc.
  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V. & van Breusegem, F. (2011). ROS signaling: The new wave? Trends in Plant Science, 16, 300-309. DOI: 10.1016/j.tplants.2011.03.007.
  • Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. DOI: 10.1093/oxfordjournals.pcp.a076232.
  • Nezhadahmadi, A., Prodhan, Z.H. & Faruq, G. (2013). Intolerantness to drought in wheat. The Scientific World Journal, ID 610721. DOI: 10.1155/2013/610721.
  • Noctor, G., Reichheld, J. P. & Foyer, C. H. (2017). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 8, 3-12. DOI: 10.1016/j.semcdb.2017.07.013.
  • Petrov, V. D. & Breusegem, F. V. (2012). Hydrogen peroxide - a central hub for information flow in plant cell. AoB Plants, 2012:2012:pls014. Doi: 10.1093/aobpla/pls014.
  • Pinheiro, C. & Chaves, M. M. (2011). Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62, 869-882. DOI: 10.1093/jxb/erq340.
  • Popovych, V. V. (2018). Dependence of catalase enzyme activity on starch content in ruderal vegetation of landfills. Bulletin of LDUBZH, 18, 139-145.
  • Potters, G. (2004). Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology, 134(4), 1479-1487. DOI: 10.1104/pp.103.033548.
  • Romero-Puertas, M. C., Corpas, F. J., Sandalio, L. M., Leterrier, M., Rodrіguez-Serrano, M., Del Rіo, L. A. & Palma, J. M. (2006). Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist, 170, 432-452. DOI: 10.1111/j.1469-8137.2005.01643.x.
  • Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology 141(2), 336-340. DOI: 10.1104/pp.106.078089.
  • Sattler, S., Gilliland, L., Magallanes-Lundback, M., Pollard, M. & Della Penna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 16(6), 1419-1432. DOI: 10.1105/tpc.021360.
  • Scandalios, J.G. (2002). The rise of ROS. Trends in Biochemical Sciences, 27, 483-486.
  • Secenji, M., Hideg, E., Bebes, A. & Gyorgyey, J. (2010). Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Reports, 29(1), 37-50. DOI: 10.1007/s00299-009-0796-x.
  • Shao, N., Krieger-Liszkay, A., Schroda, M. & Beck, C. F. (2007). A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assey of reactive oxygen species produced in vivo. The Plant Journal, 50(3), 475-487. DOI: 10.1111/j.1365-313X.2007.03065.x.
  • Smirnoff, N. (2018). Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology and Medicine, 122, 116-129. DOI: 10.1016/j.freeradbiomed.2018.03.033.
  • Sofo, A., Scopa, A., Nuzzaci, M. & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6), 13561-13578. DOI: 10.3390/ijms160613561.
  • Ministry of Agrarian Policy and Food of Ukraine. (2022, September). State register of plant varieties suitable for distribution in Ukraine for 2022. Kyiv: Ministry of Agrarian Policy and Food of Ukraine. Retrieved September, 8, 2022, from https://sops.gov.ua/reestr-sortiv-roslin [In Ukrainian].
  • Strohm, M. (1995). Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione-synthetase. The Plant Journal, 7(1), 414-145. DOI: 10.1046/j.1365-313X.1995.07010141.x.
  • Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzе, D. & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal, 16, 4806-4816. DOI: 10.1093/emboj/16.16.4806.
  • Yu, C. W., Murphy, T. M. & Lin, C. H. (2003). Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology, 30, 955-963. DOI: 10.1071/FP03091.
  • Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q. & Lu, T. (2013). Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 8(2), e57472. DOI: 10.1371/journal.pone.0057472.
  • Zhuk, O. I. (2011). Formation of the adaptive response of plants to water deficit. Physiology and Biochemistry of Cultivated Plants, 43(1), 26-37.
Identyfikator YADDA
bwmeta1.element.baztech-3a714996-bbde-4dc6-9191-ba710e77618a