PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The molecular dynamics of nematic liquid crystal confined in porous membranes treated by different surfactants

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The molecular dynamics of the well-known nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl geometrically restricted in Anopore and Synpor porous membranes with various pore structure and treated by different surfactants (namely decanoic acid and lecithin) is compared. In the Anopore membrane the chosen surfactants induce the homeotropic orientation of the molecules on the walls of the cylindrical pores and observed corresponding relaxation processes (librational modes) are practically the same. The dielectric measurements of lecithin treated Synpor membranes reveals the reorientation of the molecules from planar to homeotropic on the complex multilayer structure present in their volume. The dielectric strengths of the observed two molecular processes (δ-process and librational mode) are inversed in the ratio compared to the untreated membranes. The observed differences in molecular dynamics results from the orientation of the liquid crystal molecules in untreated and treated membranes and the structure of the membranes themselves.
Twórcy
  • Stanisław Staszic University of Applied Sciences in Piła, 10 Podchorążych St., Piła 64-920, Poland
Bibliografia
  • [1] S.A. Różański, Dynamics of molecular and collective relaxation processes in confined liquid crystals, in: Z. Galewski, L. Sobczyk (Eds.), Dielectric Properties of Liquid Crystals, Transworld Research Network, Trivandrum, 2007, pp. 183–216.
  • [2] S.A. Różański, R. Stannarius, H. Groothues, F. Kremer, Dielectric properties of the nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl in porous membranes, Liq. Cryst. 20 (1996) 59–66.
  • [3] G.P. Crawford, D.W. Allender, J.W. Doane, Surface elastic and molecular-anchoring properties of nematic liquid crystals confined in cylindrical cavities, Phys. Rev. A 45 (1992) 8693–8708.
  • [4] D. Finotello, G.S. Iannacchione, S. Qian, Phase transitions in restricted geometries, in: G.P. Crawford, S. Zumer (Eds.), Liquid Crystals in Complex Geometries, Taylor & Francis, London, 1996, pp. 325–343.
  • [5] S.A. Różański, R. Stannarius, F. Kremer, Dielectric and electro-optic study of nematic 5CB confined in nitrate cellulose membranes, Z. Phys. Chem. 211 (1999) 147–158.
  • [6] G. Chahine, A.V. Kityk, N. Démarest, F. Jean, K. Knorr, P. Huber, R. Lefort, J.-M. Zanotti, D. Morineau, Collective molecular reorientation of a calamitic liquid crystal (12CB) confined in alumina nanochannels, Phys. Rev. E 82 (2010), 011706.
  • [7] M. Jasiurkowska, W. Kossack, R. Ene, C. Iacob, W.K. Kipnusu, P. Papadopoulos, J.R. Sangoro, M. Massalska-Arodz, F. Kremer, Molecular dynamics and morphology of confined 4-heptyl-4’-isothiocyanatobiphenyl liquid crystals, Soft Matter 8 (2012) 5194–5200.
  • [8] M. Busch, A.V. Kityk, W. Piecek, T. Hofmann, D. Wallacher, S. Całus, P. Kula, M. Steinhart, M. Eichf, P. Huber, A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations, Nanoscale 48 (2017) 19086–19099.
  • [9] A. Selevou, G. Papamokos, M. Steinhart, G. Floudas, 8OCB and 8CB liquid crystals confined in nanoporous alumina: effect of confinement on the structure and dynamics, J. Phys. Chem. B 121 (2017) 7382–7394.
  • [10] A. Golemme, S. Zumer, D.W. Allender, J.W. Doane, Continuous nematic-isotropic transition in submicron-size liquid-crystal droplets, Phys. Rev. Lett. 61 (1988) 2937–2940.
  • [11] K. Usui, E. Katayama, J. Wang, K. Hisano, N. Akamatsu, A. Shishido, Effect of surface treatment on molecular reorientation of polymer-stabilized liquid crystals doped with oligothiophene, Polym. J. 49 (2017) 209–214.
  • [12] Ch. Cramer, Th. Cramer, F. Kremer, R. Stannarius, Measurement of orientational order and mobility of a nematic liquid crystal in random nanometer confinement, J. Chem. Phys. 106 (1997) 3730–3742.
  • [13] A. Zidansek, S. Kralj, R. Repnik, G. Lahajnar, M. Rappolt, H. Amenitsch, S. Bernstorff, Smectic ordering of octylcyanobiphenyl confined to control porous glasses, J. Phys. Condens. Matter 12 (2000) A431–A436.
  • [14] A. Mertelj, M. Copic, Evidence of dynamic long-range correlations in a nematic-liquid-crystal–aerogel system, Phys. Rev. E 55 (1997) 504–507.
  • [15] S. Relaix, R.L. Leheny, L. Reven, M. Sutton, Memory effect in composites of liquid crystal and silica aerosil, Phys. Rev. E 84 (2011), 061705.
  • [16] S.A. Różański, G.P. Sinha, J. Thoen, Influence of hydrophilic and hydrophobic aerosil particles on the molecular modes in the liquid crystal 4-n-pentyl-4’-cyanobiphenyl, Liq. Cryst. 33 (2006) 833–840.
  • [17] X. Liu, D. Allender, D. Finotello, Calorimetric study of nematic prewetting, Europhys. Lett. 59 (2002) 848–854.
  • [18] P.F. Lagerwall, G. Scalia (Eds.), Liquid Crystals with Nano and Microparticles, World Scientific, Singapore, 2017.
  • [19] S. Kralj, A. Zidansek, G. Lahajnar, S. Zumer, R. Blinc, Influence of surface treatment on the smectic ordering within porous glass, Phys. Rev. E 62 (2000) 718–725.
  • [20] B. Jérôme, Surface effects and anchoring in liquid crystals, Rep. Prog. Phys. 54 (1991) 391–451.
  • [21] A. Arcioni, C. Bacchiocchi, L. Grossi, A. Nicolini, C. Zannoni, Electron spin resonance studies of order and dynamics in a nematic liquid crystal containing a dispersed hydrophobic aerosil, J. Phys. Chem. B 106 (2002) 9245–9251.
  • [22] F. Aliev, S. Basu, Relaxation of director reorientations in nanoconfined liquid crystal: dynamic light scattering investigation, J. Non-Cryst. Solids 352 (2006) 4983–4987.
  • [23] R. Lefort, F. Jean, L. Noirez, M. Ndao, C. Cerclier, D. Morineau, Smectic C chevrons in nanocylinders, Appl. Phys. Lett. 105 (2014), 203106.
  • [24] K. Sentker, A.W. Zantop, M. Lippmann, T. Hofmann, O.H. Seeck, A.V. Kityk, A. Yildirim, A. Schoenhals, M.G. Mazza, P. Huber, Quantized self-assembly of discotic rings in a liquid crystal confined in nanopores, Phys. Rev. Lett. 120 (2018), 067801.
  • [25] A. Zidansek, G. Lahajnar, S. Kralj, Phase transitions in 8CB liquid crystal confined to a controlled-pore glass: deuteron NMR and small angle X-ray scattering studies, Appl. Magn. Reson. 27 (2004) 311–319.
  • [26] S. Kralj, D. Jesenek, G. Cordoyiannis, G. Lahajnar, Z. Kutnjak, Memory-controlled smectic wetting of liquid crystals confined to controlled-pore matrices, Fluid Phase Equilib. 351 (2013) 87–93.
  • [27] C.V. Cerclier, M. Ndao, R. Busselez, R. Lefort, E. Grelet, P. Huber, A.V. Kityk, L. Noirez, A. Schönhals, D. Morineau, Structure and phase behavior of a discotic columnar liquid crystal confined in nanochannels, J. Phys. Chem. C 116 (2012) 18990–18998.
  • [28] D.S. Miller, R.J. Carlton, P.C. Mushenheim, N.L. Abbott, Instructional review: an introduction to optical methods for characterizing liquid crystals at interfaces, Langmuir 29 (2013) 3154–3169.
  • [29] B. Zalar, R. Blinc, S. Zumer, T. Jin, D. Finotello, Behavior of mesogenic molecules deposited at the alumina-air interface: a deuteron NMR study, Phys. Rev. E 65 (2002), 041703.
  • [30] D. Finotello, T. Jin, B. Zalar, S. Zumer, DNMR study of monolayer thick films formed by nematogenic molecules, in: 18th International Liquid Crystal Conference, Sendai, Japan, Abstracts, 2000, p. 491, July 24 – 28.
  • [31] G.S. Iannacchione, J.T. Mang, S. Kumar, D. Finotello, Surface-induced discrete smectic order in the isotropic phase of 12CB in cylindrical pores, Phys. Rev. Lett. 73 (1994) 2708–2711.
  • [32] G.S. Iannacchione, D. Finotello, Calorimetric study of phase transitions in confined liquid crystals, Phys. Rev. Lett. 69 (1992) 2094–2097.
  • [33] S. Diez-Berart, D.O. López, M.R. de la Fuente, J. Salud, M.A. Pérez-Jubindo, D. Finotello, Critical behaviour in liquid-crystalline phase transitions: a comparative study of 9OCB in bulk and Anopore membranes, Liq. Cryst. 37 (2010) 893–901.
  • [34] M. Rivera, S. Basu, F. Aliev, Dielectric relaxation in liquid crystal confined to cylindrical pores: effect of different layer thicknesses and boundary conditions, Mol. Cryst. Liq. Cryst. 421 (2004) 187–196.
  • [35] W. Haase, S. Wróbel (Eds.), Relaxation Phenomena, Springer-Verlag, Berlin, 2003.
  • [36] S.A. Różański, J. Thoen, Collective dynamic modes in ferroelectric liquid crystal-aerosil dispersions, Liq. Cryst. 32 (2005) 331–341.
  • [37] https://www.pragochema.cz/en/products/aids-ananalytical-and-biological laboratories, 6.11.2019.
  • [38] https://cdn.gelifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061& destinationid=10016&assetid=26537, 6.11.2019.
  • [39] A.R. Brás, M. Dionísio, A. Schönhals, Confinement and surface effects on the molecular dynamics of a nematic mixture investigated by dielectric relaxation spectroscopy, J. Phys. Chem. B 112 (2008) 8227–8235.
  • [40] G.P. Crawford, R.J. Ondris-Crawford, S. Zumer, S. Keast, M. Neubert, J.W. Doane, Alignment and ordering mechanisms at a liquid crystal-solid interface, Liq. Cryst. 14 (1993) 1573–1585.
  • [41] S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer 8 (1967) 161–210.
  • [42] F.M. Aliev, Z. Nazario, G.P. Sinha, Broadband dielectric spectroscopy of confined liquid crystals, J. Non-Cryst. Solids 305 (2002) 218–225.
  • [43] F.M. Aliev, Relaxation of Librational Mode in Confined Liquid Crystal, Dielectric Newsletter of Novocontrol, 2005, pp. 1–3, issue February.
  • [44] J.A. Castellano, Surface anchoring of liquid crystal molecules on various substrates, Mol. Cryst. Liq. Cryst. 94 (1983) 33–41.
  • [45] J.A. Castellano, Alignment of liquid crystal molecules on various surfaces: myths, theories, facts, in: A.C. Griffin, J.F. Johnson (Eds.), Liquid Crystals & Ordered Fluids II, Plenum Press, New York, 1984, pp. 763–780.
  • [46] S.A. Różańskii, R. Stannarius, F. Kremer, S. Diele, Structure and dynamics of ferroelectric liquid crystals under random geometrical restrictions, Liq. Cryst. 28 (2001) 1071–1083.
  • [47] S.A. Różański, Effective permittivity of liquid crystal nanodispersions and composites with different pore structure, Phase Transit. 92 (2019) 79–86.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a6d9116-bf7b-4cd9-810b-0d7b0d316e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.