Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we propose a new mathematical model describing the deformations of an isotropic nonlinear elastic body with variable exponent in dynamic regime. We assume that the stress tensor σp(·) has the form σp(·)(u) =(2μ + |d(u)|p(·)−2) d(u) + λTr (d(u)) I3, where u is the displacement field, μ, λ are the given coefficients d(·) and I3 are the deformation tensor and the unit tensor, respectively. By using the Faedo-Galerkin techniques and a compactness result we prove the existence of the weak solutions, then we study the asymptotic behaviour stability of the solutions.
Czasopismo
Rocznik
Tom
Strony
409--428
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- University of Blida 1, Department of Mathematics, LAMDA-RO Laboratory, PO Box 270 Route de Soumaa, Blida, Algeria
autor
- University of Kasdi Merbah-Ouargla, Department of Mathematics, Ouargla, Algeria
Bibliografia
- [1] S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: existence and blow-up, J. Difference Equ. Appl. 3 (2011), 503–525.
- [2] S.N. Antontsev, S.I. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. of Math. Sciences 150 (2008), 2289–2301.
- [3] M.M. Boureanu, Existence of solutions for anisotropic quasilinear elliptic equations with variable exponent, Adv. Pure Appl. Math. 1 (2010), no. 3, 387–411.
- [4] M.M. Boureanu, A. Matei, M. Sofonea, Nonlinear problems with p(·)-growth conditions and applications to antiplane contact models, Advanced Nonlinear Studies 14 (2014), 295–313.
- [5] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383–1406.
- [6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.
- [7] M. Dilmi, M. Dilmi, H. Benseridi, Asymptotic behavior for the elasticity system with a nonlinear dissipative term, Rend. Istit. Mat. Univ. Trieste 51 (2019), 41–60.
- [8] G. Duvant, J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
- [9] X. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446.
- [10] X.L. Fan, D. Zhao, On the generalised Orlicz–Sobolev space Wk,p(x)(Ω), Journal of Gansu Education College 12 (1998), no. 1, 1–6.
- [11] M. Gaczkowski, P. Górka, D.J. Pons, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Mathematical Methods in the Applied Sciences 33 (2010), no. 2, 125–137.
- [12] S. Ghegal, I. Hamchi, S.A. Messaoudi, Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 99 (2020), no. 8, 1333–1343.
- [13] P. Gwiazda, F.Z. Klawe, A. Świerczewska-Gwiazda, Thermo-viscoelasticity for Norton–Hoff-type models, Nonlinear Analysis: Real World Applications 26 (2015), 199–228.
- [14] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Res. Appl. Math., vol. 36, Wiley-Masson, 1994.
- [15] J.E. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. 16 (1991), no. 1, 35–54.
- [16] W. Lian, V.D. Rădulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var. 14 (2021), no. 4, 589–611.
- [17] L.J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1966.
- [18] T.F. Ma, J.A. Soriano, On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Analysis: Theory, Methods & Applications 37 (1999), 1029–1038.
- [19] S.A. Messaoudi, A.A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal. 96 (2017), 1509–1515.
- [20] S.A. Messaoudi, J.H. Al-Smail, A.A. Talahmeh, Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities, Comput. Math. Appl. 76 (2018), 1863–1875.
- [21] J.T. Oden, Existence theorems for a class of problems in nonlinear elasticity, J. Math. Anal. Appl. 69 (1979), 51–83.
- [22] S. Otmani, S. Boulaaras, A. Allahem, The maximum norm analysis of a nonmatching grids method for a class of parabolic p(x)-Laplacian equation, Boletim da Sociedade Paranaense de Matemática 40 (2022), 1–13.
- [23] A. Rahmoune, On the existence, uniqueness and stability of solutions for semi-linear generalized elasticity equation with general damping term, Acta Mathematica Sinica, English Series Nov. 33 (2017), no. 11, 1549–1564.
- [24] V. Rădulescu, D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Quantitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
- [25] M. Ružicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., Springer, Berlin, 2000.
- [26] J. Simsen, M. Simsen, P. Wittbold, Reaction-diffusion coupled inclusions with variable exponents and large diffusion, Opuscula Math. 41 (2021), no. 4, 539–570.
- [27] R. Stegliński, Notes on applications of the dual fountain theorem to local and nonlocal elliptic equations with variable exponent, Opuscula Math. 42 (2022), no. 5, 751–761.
- [28] V.V. Zhikov, On the density of smooth functions in Sobolev–Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 67–81.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a69bd58-01a5-432d-b7e6-42ec13433591