PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial neural network approach for modeling of Ni(II) adsorption from aqueous solution by peanut shell

Autorzy
Identyfikatory
Warianty tytułu
PL
Wykorzystanie sztucznych sieci neuronowych do modelowania adsorpcji Ni(II) z roztworów wodnych przez skorupki orzechów arachidowych
Języki publikacji
EN
Abstrakty
EN
In this study, ANN (artificial neural network) model was applied to estimate the Ni(II) removal efficiency of peanut shell based on batch adsorption tests. The effects of initial pH, metal concentrations, temperature, contact time and sorbent dosage were determined. Also, COD (chemical oxygen demand) was measured to evaluate the possible adverse effects of the sorbent during the tests performed with varying temperature, pH and sorbent dosage. COD was found as 96.21 mg/dm3 at pH 2 and 54.72 mg/dm3 at pH 7. Also, a significant increase in COD value was observed with increasing dosage of the used sorbent. COD was found as 12.48 mg/dm3 after use of 0.05 g sorbent and as 282.78 mg/dm3 after use of 1 g sorbent. During isotherm studies, the highest regression coefficient (R 2) value was obtained with Freundlich isotherm (R 2 = 0.97) for initial concentration and with Temkin isotherm for sorbent dosage. High pseudo-second order kinetic model regression constants were observed (R 2 = 0.95-0.99) during kinetic studies with varying pH values. In addition, Ni(II) ion adsorption on peanut shell was further defined with pseudo-second order kinetic model, since qe values in the second order kinetic equation were very close to the experimental values. The relation between the estimated results of the built ANN model and the experimental results were used to evaluate the success of ANN modeling. Consequently, experimental results of the study were found to be in good agreement with the estimated results of the model.
Rocznik
Strony
581--604
Opis fizyczny
Bibliogr. 77 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Environmental Engineering, Engineering Faculty, Cumhuriyet University, Kayseri street, 58140, Sivas, Turkey, phone +90 03462191010
Bibliografia
  • [1] Çay S, Uyanik A, Özaşik A. Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Separ Purif Technol. 2004;38(3):273-280. DOI: 10.1016/j.seppur.2003.12.003.
  • [2] Tabaraki R, Nateghi A. Multimetal adsorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 2014;71:197-205. DOI: 10.1016/j.ecoleng.2014.07.031.
  • [3] Zimmerman JB, Mihelcic JR, Smith J. Global stressors on water quality and quantity. Environ Sci Technol. 2008;42:4247-4254. DOI: 10.1021/es0871457.
  • [4] Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229-238. DOI: 10.1016/j.resconrec.2013.01.019.
  • [5] Malamis S, Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater. 2013;252-253:428-461. DOI: 10.1016/j.jhazmat.2013.03.024.
  • [6] Khairy M, El-Safty SA, Shenashen MA. Environmental remediation and monitoring of cadmium. TrAC Trend Anal Chem. 2014;62:56-68. DOI: 10.1016/j.trac.2014.06.013.
  • [7] Pap S, Radonic J, Trifunovic S, Adamovic D, Mihajlovic I, Miloradov MV, et al. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J Environ Manage. 2016;184:297-306. DOI: 10.1016/j.jenvman.2016.09.089.
  • [8] Dawodua FA, Akpomie KG. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution onto a Nigerian kaolinite clay. J Mater Res Technol. 2014;3:129-141. DOI: 10.1016/j.jmrt.2014.03.002.
  • [9] Vieira MGA, Almeida Neto AF, Gimenes ML, da Silva MGC. Removal of nickel on Bofe bentonite calcined clay in porous bed. J Hazard Mater. 2010;176:109-118. DOI: 10.1016/j.jhazmat.2009.10.128.
  • [10] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407-418. DOI: 10.1016/j.jenvman.2010.11.011.
  • [11] Garba ZN, Shikin FBS, Afidah AR. Valuation of activated carbon from waste tea for the removal of a basic dye from aqueous solution. J Chem Eng Chem Res. 2015;2:623-633. https://s3.amazonaws.com/academia.edu.documents/37903468/JCECR_PAPER.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1518191815&Signature=EuAEpe05%2BXh%2FQ4XjINf2TnqKdqc%3D&response-content-disposition=inline%3B%20filename%3DValuation_of_Activated_Carbon_from_Waste.pdf.
  • [12] Mohammadi M, Ghaemi A, Torab-Mostaedi M, Asadollahzadeh M, Hemmati A. Adsorption of cadmium(II) and nickel(II) on dolomite powder. Desal Water Treat. 2015;53:149-157. DOI: 10.1080/19443994.2013.836990.
  • [13] Mondal S, Sinha K, Aikat K, Halder G. Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung seed husk. J Environ Chem Eng. 2015;3:187-195. DOI: 10.1016/j.jece.2014.11.021.
  • [14] Qiu G, Xie Q, Liu H, Chen T, Xie J, Li H. Removal of Cu(II) from aqueous solutions using dolomite-palygorskite clay: performance and mechanisms. Appl Clay Sci. 2015;118:107-115. DOI: 10.1016/j.clay.2015.09.008.
  • [15] Farghali AA, Bahgat M, Enaiet A, Khedr MH. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci. 2013;2:61-71. DOI: 10.1016/j.bjbas.2013.01.001.
  • [16] Davarnejad R, Panahi P. Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology. J Industrial Eng Chem. 2016;33:270-275. DOI: 10.1016/j.jiec.2015.10.013.
  • [17] Cao J, Wu Y, Jin Y, Yilihan P, Huang W. Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. J Taiwan Inst Chem Eng. 2014;45:860-868. DOI: 10.1016/j.jtice.2013.09.011.
  • [18] Akunwa NK, Muhammad MN, Akunna JC. Treatment of metal contaminated wastewater: a comparison of low-cost biosorbents. J Environ Manage. 2014;146:517-523. DOI: 10.1016/j.jenvman.2014.08.014.
  • [19] Anna B, Kleopas M, Constantine S, Anestis F, Maria B. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environ Earth Sci. 2015;73:5435-5444. DOI: 10.1007/s12665-014-3798-0.
  • [20] Sun Y, Wang Q, Chen C, Tan X, Wang X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol. 2012;46:6020-6027. DOI: 10.1021/es300720f.
  • [21] Sun YB, Zhang R, Ding CC, Wang XX, Cheng WC, Chen CL, et al. Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta. 2016;180:51-65. DOI: 10.1016/j.gca.2016.02.012.
  • [22] Al Dwairi R, Al-Rawajfeh A. Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. J Univ Chem Technol Metall. 2012;41:69-76. http://dl.uctm.edu/journal/node/j2012-1/8_Al_Dwairi%20%2069-76.pdf.
  • [23] Jiang MQ, Jin XY, Lu XQ, Chen ZL. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010;25:233-39. DOI: 10.1016/j.desal.2009.11.005.
  • [24] Kapur M, Gupta R, Mondal MK. Parametric optimization of Cu(II) and Ni(II) adsorption onto coal dust and magnetized sawdust using Box-Behnken design of experiments. Environ Progress Sust Energy. 2016;35(6):1597-1604. DOI: 10.1002/ep.12393.
  • [25] Vilvanathan S, Shanthakumar S. Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: adsorption kinetics, equilibrium and thermodynamics study. Desalin Water Treat. 2016;57:3995-4007. DOI: 10.1080/19443994.2014. 989913.
  • [26] Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S. Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J. 2011; 67:122-131. DOI: 10.1016/j.cej.2010.12.010.
  • [27] Bojic DV, Nikolic GS, Mitrovic JZ, Radovic MD, Petrovic MM, Markovic DZ, et al. Kinetic, equilibrium and thermodynamic studies of Ni(II) ions sorption on sulfuric acid treated lagenaria vulgaris shell. Chem Ind Chem Eng Q. 2016;22(3):235-247. DOI: 10.2298/CICEQ150318037B.
  • [28] Tahervand T, Jalali M. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environ Monit Assess. 2016;188:322. DOI: 10.1007/s10661-016-5313-4.
  • [29] Garba ZN, Nkole I, Amina U, Abdullahi K. Evaluation of optimum adsorption conditions for Ni(II) and Cd(II) removal from aqueous solution by modified plantain peels (MPP). Beni-Suef Univ J Basic Appl Sci. 2016;5:170-179. https://ac.els-cdn.com/S2314853516300142/1-s2.0-S2314853516300142-main.pdf?_tid=19073e0a-0daa-11e8-a2f5-00000aacb361&acdnat=1518188665_61c173d67ac6e7dfafd0eb4aa6df7280.
  • [30] Liao B, Sun W, Sang-lan Ding NG, Su S. Equilibriums and kinetics studies for adsorption of Ni(II) ion onchitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochem Eng Aspects. 2016;501:32-41. DOI: 10.1016/j.colsurfa.2016.04.043.
  • [31] Maleki S, Karimi-Jashni A. Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Appl Clay Sci. 2017;137:213-224. DOI: 10.1016/j.clay.2016.12.008.
  • [32] Khataee AR, Dehghan G, Zarei M, Ebadi A, Pourhassan M. Neural network modeling of biotreatment of triphenylmethane dye solution by a gren macroalgae. Chem Eng Res Design. 2011;89:172-178. DOI: 10.1016/j.cherd.2010.05.009.
  • [33] Das B, Mondal NK. Calcareous soil as a new adsorbent to remove lead from aqueous solution: Equilibrium, kinetic and thermodynamic study. Uni J Environ Res Tech. 2011;1(4):515-530.
  • [34] Khan TA, Shahjahan EA. Removal of basic dyes from aqueous solution by adsorption onto binaryiron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling. Appl Clay Sci. 2015;107:70-77. DOI: 10.1016/j.clay.2015.01.005.
  • [35] Asl SMH, Ahmadi M, Ghiasvand M, Tardast A, Katal R. Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J Ind Eng Chem. 2013;19:1044-1055. DOI: 10.1016/j.jiec.2012.12.001.
  • [36] Allen SJ, Gan Q, Matthews R, Johnson PA. Comparison of optimised isotherm models for basic dye adsorption by kuzdu. Bioresour Technol. 2003;88(2):143-152. DOI: 10.1002/(SICI)1097-4660(199704)68:4<442.
  • [37] Katal R, Sefti MV, Jafari M, Dehaghani AHS, Sharifian S, Ghayyem MA. Study effect of different parameters on the sulphate sorption onto nano alumina. J Ind Eng Chem. 2012;18:230-236. DOI: 10.1016/j.jiec.2011.11.012.
  • [38] Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, et al. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. DOI: 10.1016/j.clay.2013.08.033.
  • [39] Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-827. DOI: 10.1002/cjce.5450760419.
  • [40] Murugesan A, Ravikumar L, Sathya Selva Bala V, Senthil Kumar P, Vidhyadevi T, Dnesh Kirupha S, et al. Removal of Pb(II) Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: equilibrium and kinetic approach. Desalination. 2011;271:199-208. DOI: 10.1016/j.desal.2010.12.029.
  • [41] Jamshidi M, Ghaedi M, Dashtian K, Hajati S, Bazrafshan AA. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: derivative spectrophotometric, optimization, kinetic and isotherm study. Ultrason Sonochem. 2016;32:119-131. DOI: 10.1016/j.ultsonch.2016.03.004.
  • [42] Shah J, Jan MR, Haq A, Zeeshan M. Equilibrium, kinetic and thermodynamic studies for sorption of Ni(II) from aqueous solution using formaldehyde treated waste tea leaves. J Saudi Chemical Soc. 2015;19(3):301-310. DOI: 10.1016/j.jscs.2012.04.004.
  • [43] Enayatollahi I, Bazzazi AA, Asadi A. Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock Mech Rock Eng. 2014;47:799-807. DOI: 10.1007/s00603-013-0415-6.
  • [44] Chairez I, Garcia-Pena I, Cabrera A. Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. J Process Control. 2009;19:1103-1110. DOI: 10.1016/j.jprocont.2008.12.009.
  • [45] Yildiz S, Değirmenci M. Estimation of oxygen exchange during treatment sludge composting through multiple regression and artificial neural networks. Int J Environ Res. 2015;9(4):1173-1182. DOI: 10.22059/IJER.2015.1007.
  • [46] Agarwal S, Tyagi I, Kumar GV, Ghaedi M, Masoomzade M. Kinetics and thermodynamics of methyl orange adsorption from aqueous solutions-artificial neural network-particle swarm optimization modeling. J Molecular Liquids. 2016;218:354-362. DOI: 10.1016/j.molliq.2016.02.048.
  • [47] Ghaedi M, Zeinali N, Maghsoudi M, Purkait MK. Artificial Neural Network (ANN) method for modeling of sunset yellow dye adsorption using nickel sulfide nanoparticle loaded on activated carbon: kinetic and isotherm study. J Dispersion Sci Tech. 2015;36:1339-1348. DOI: 10.1080/01932691.2014.964359.
  • [48] Kunnambath PM, Thirumalaisamy S. Characterization and utilization of tannin extract for the selective adsorption of Ni(II) ions from water. Hindawi Publ Corp J Chem. 2015;9 pages. DOI: 10.1155/2015/498359.
  • [49] Zhao Y, Yang S, Ding D, Chen J, Yang Y, Lei Z, et al. Effective adsorption of Cr(VI) from aqueous solution using natural akadama clay. J Colloid Interface Sci. 2013;395:198-204. DOI: 10.1016/j.jcis.2012.12.054.
  • [50] Zhu X, Lan L, Xiang N, Liu W, Zhao Q, Li H. Thermodynamic studies on the adsorption of Cu2+, Ni2+ and Cd2+ onto amine-modified bentonite. Bull Chem Soc Ethiop. 2016;30(3):357-367. DOI: 10.4314/bcse.v30i3.4.
  • [51] Kiliç F, Sarici Özdemir Ç. Experimental and modeling studies of methylene blue adsorption onto particles of peanut shell. Part Sci Tech. 2016;34(6):658-664. DOI: 10.1080/02726351.2015.1102188.
  • [52] Alothman ZA, Naushad M, Ali R. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid. Environ Sci Pollut Res. 2013;20:3351-3365. DOI: 10.1007/s11356-012-1259-4.
  • [53] Malkoc E, Nuhoglu Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J Hazard Mater. 2005;127(1-3):120-128. DOI: 10.1016/j.jhazmat.2005.06.030.
  • [54] Mahramanlioglu M, Kizilcikli I, Bicer IO. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluorine Chem. 2002;115(1);41-47. DOI: 10.1016/S0022-1139(02)00003-9.
  • [55] Giwa AA, Abdulsalam KA, Wewers F, Oladipo MA. Biosorption of acid dye in single and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. Hindawi Publish Corp J Chem. 2016;Article ID 6436039,11 pages. DOI: 10.1155/2016/6436039.
  • [56] Maheshwari U, Mathesan B, Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism. Proc Safety Environ Protec. 2015;98:198-210. DOI: 10.1016/j.psep.2015.07.010.
  • [57] Li H, Huang G, An C, Hu J, Yang S. Removal of tannin from aqueous solution by adsorption onto treated coal fly ash: kinetic, equilibrium, and thermodynamic studies. Ind Eng Chem Res. 2013;52:15923-15931. DOI: 10.1021/ie402054w.
  • [58] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.
  • [59] Luo X, Zhang L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater. 2009;171:340-347. DOI: 10.1016/j.jhazmat.2009.06.009.
  • [60] Sawalha MF, Videa JRP, Gonzalez JR, Gardea-Torresdey JL. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. J Colloid Interface Sci. 2006;300:100-104. DOI: 10.1016/j.jcis.2006.03.029.
  • [61] Kłos A. Determination of sorption properties of heavy metals in various biosorbents. Ecol Chem Eng S. 2018;25(2): 201-216. DOI: 10.1515/eces-2018-0013.
  • [62] Abd El-Latif M, Elkady M. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination. 2010;255:21-43. DOI: 10.1016/j.desal.2010.01.020.
  • [63] Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol. 1996;17:71-77. DOI: 10.1080/09593331708616362.
  • [64] Li Q, Zhai J, Zhang W, Wang M, Zhou J. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater. 2007;141:163-167. DOI: 10.1016/j.jhazmat.2006.06.109.
  • [65] Vaghetti JCP, Lima EC, Royer B, Cardoso NF, Martins B, Calvete T. Pecan nutshell as biosorbent to remove toxic metals from aqueous solution. Sep Sci Technol. 2009;44:615-644. DOI: 10.1080/01496390802634331.
  • [66] Mohan D, Singh KP. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse an agricultural waste. Water Res. 2002;36:2304-2318. DOI: 10.1016/S0043-1354(01)00447-X.
  • [67] Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J Hazard Mater. 2008;152:407-414. DOI: 10.1016/j.jhazmat.2007.07.028.
  • [68] Kulkarni RM, Shetty KV, Srinikethan G. Cadmium(II) and nickel(II) biosorption by Bacillus laterosporus (MTCC 1628). J Taiwan Inst Chem Eng. 2014;45(4):1628-1635. DOI: 10.1016/j.jtice.2013.11.006.
  • [69] Ahmad MF, Haydar S, Quraishi TA. Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeter Biodeg. 2013;83:119-128. DOI: 10.1016/j.ibiod.2013.04.016.
  • [70] Allen SJ, Whitten LI, Murkal M, Duggan O. The adsorption of pollutants by peat, lignite and activated chars. J Chem Tech Biotechnol. 1997;68(4):442-452. DOI: 10.1002/(SICI)1097-4660(199704)68:4<442.
  • [71] Bulut Y, Aydin HA. Kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006;194:259-267. DOI: 10.1016/j.desal.2005.10.032.
  • [72] Rehab MA, Hesham AH, Mohamed MH, Gihan FM. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng. 2016;91:317-332. DOI: 10.1016/j.ecoleng.2016.03.015.
  • [73] Garza-Gonzalez MT, Alcalá-Rodríguez MM, Pérez-Elizondo R, Cerino-Córdova FJ, Garcia-Reyes RB, Loredo-Medrano JA. Artificial neural network for predicting biosorption of methylene blue by Spirulina sp. Water Sci Technol. 2011;63:977-983. DOI: 10.2166/wst.2011.279.
  • [74] Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León AM, Soto-Regalado E, Davila-Guzman. NE, Salazar-Rabago JJ. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng. 2011;68:201-210. DOI: 10.1016/j.jtice.2016.08.038.
  • [75] Marjan T, Seyyed Hossein H, Asieh DK, Martin O, Kianoush K, Reza R, Imran A. Artificial neural network optimization form ethyl orange adsorption ontopolyaniline nano-adsorbent: Kinetic, isotherm and thermodynamic studies. J Molec Liquids. 2017;244:189-200. DOI: 10.1016/j.molliq.2017.08.122.
  • [76] Rezvan K, Fakhri Y, Mehrorang G, Kheibar D. Back propagation artificial neural network and central composite design modeling of operational parameter impact for sunset yellow and azur (II) adsorption onto MWCNT and MWCNT-Pd-NPs: Isotherm and kinetic study. Chemomet Intelligent Lab Systems. 2016;159:127-137. DOI: 10.1016/j.chemolab.2016.10.012.
  • [77] Maghsoudi M, Ghaedi M, Zinali A, Ghaedi AM, Habibi MH. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study. Spec Acta Part A: Molec Biomolec Spectr. 2015;134:1-9. DOI: 10.1016/j.saa.2014.06.106.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a6903db-bf4f-42fc-8c82-74640e9c0798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.