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EIGENVALUE ASYMPTOTICS
FOR THE STURM-LIOUVILLE OPERATOR

WITH POTENTIAL
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Abstract. We find asymptotic formulas for the eigenvalues of the Sturm-Liouville operator
on the finite interval, with potential having a strong negative singularity at one endpoint.
This is the case of limit circle in H. Weyl sense. We establish that, unlike the case of an infinite
interval, the asymptotics for positive eigenvalues does not depend on the potential and it is
the same as in the regular case. The asymptotics of the negative eigenvalues may depend
on the potential quite strongly, however there are always asymptotically fewer negative
eigenvalues than positive ones. By unknown reasons this type of problems had not been
studied previously.
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1. INTRODUCTION

The study of spectral properties of the Sturm-Liouville operator has been attracting
attention of researchers for more than a century. This study induced creation of various
advanced methods of analysis, in particular of functional analysis. Sturm-Liouville
spectral problems are related to some important applications in Physics. One of
the best studied topics in the spectral theory of the Sturm-Liouville operators is
the eigenvalue asymptotics. There are numerous publications in this field; we mention
only the books [10–12,14,19].

Sturm-Liouville spectral problems are naturally divided into two classes. The
problem

Hy ≡ −y′′ + q(x)y = λy, x ∈ I = (x0, x1), (1.1)
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with certain boundary conditions at the endpoints x0, x1 was initially called regular if
the interval I is finite and the “potential” q is continuous on Ī, otherwise the problem
used to be called singular. In the regular case, the spectral theory can be usually
reduced to some problems in complex analysis and algebra. The singular problems are
much more complicated and they require some hard analysis.

The reasons for a problem to be singular may be the infiniteness of the interval I,
the singularity of the potential q, or both. Usually it is supposed that the singularities
of q are placed at the endpoints of the interval (including the infinity), and that q is
nice in some proper sense at all interior points. Under these assumptions, the spectral
theory on the qualitative level is fairly well understood. The important starting point
is the criterium for whether some boundary conditions should be imposed at the
endpoints. This question has an explicit answer in the terms of the “limit point – limit
circle” classification, more exactly, in the terms of the behavior of solutions of the
equation when approaching the endpoints, and this leads to rather sharp conditions in
the terms of the properties of the potential q. As for the quantitative results, the state
of the art is the following.

If q(x) has no local singularities and tends to +∞ at the infinity, the spectrum is
discrete, consists of the sequence of eigenvalues tending to +∞, and, under rather mild
regularity conditions, has a regular asymptotic behavior. Namely, if N(H; (λ1, λ2))
denotes the number of eigenvalues of (1.1) in the interval (λ1, λ2), then

N(H; (0, λ)) ∼ π−1
x1∫

x0

(λ− q(x))
1
2
+dx, λ→ +∞, (1.2)

where (λ−q(x))+ = max(λ−q(x), 0). Formula (1.2) is usually called the Weyl type one,
or quasi-classical. The latter name expresses the fundamental relation between classical
and quantum description of processes. In our case, one associates with the (quantum)
operator H in (1.1) the corresponding classical Hamiltonian in R2: H(x, ξ) = ξ2 + q(x).
In this case, the right-hand side in (1.2) is exactly (2π)−1 times the 2-dimensional
volume in R2 of the region Ω(λ) = {(x, ξ) ∈ R2 : H(x, ξ) < λ}. This relation spreads
to a very general setting, to the asymptotic formulas for the eigenvalues of elliptic (and
not quite elliptic) differential and pseudodifferential operators in many dimensions,
with extensions to operators on manifolds, bundles and even further.

Returning to the quasi-classical formula (1.2), we note that it is proved (and valid)
under certain regularity conditions imposed on the potential q(x), both forbidding
very fast oscillations at interior points of the interval and setting some restrictions on
the behavior at infinity. The typical local regularity condition here is

q′(x) = O(q(x)d), x→∞, d < 3/2, (1.3)

Additionally, some “global” conditions should be imposed, requiring a certain
regularity in the behavior of the right-hand side of (1.2) as a function of λ. If the
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local or global conditions are broken, the formula (1.2) may fail. However, the local
irregularities can be sometimes taken care of, by means of replacing q(x) in the
expression on the right-hand side of (1.2) by its regularized version q∗ - see Ch. VII in
[10, 13] or later papers by the authors of [13] (see also [16], where the differentiability
condition is considerably relaxed.)

Another case, where the asymptotics of eigenvalues is rather well understood,
is the case of a locally regular potential q(x) that tends to zero at infinity. In this
case, the positive spectrum of the operator H is continuous and coincides with the
positive half-line, while the negative spectrum consists of finitely or infinitely many
eigenvalues (there may be no eigenvalues at all). If there are infinitely many eigenvalues
(this usually means that the potential is essentially negative and tends to zero at
infinity not too rapidly), a formula, similar to (1.2), holds for N(H; (λ,−∞)), with
the parameter λ tending to −0. Again, certain local and global regularity conditions
should be imposed, and the eigenvalue formula is semi-classical, immediately, or with
replacement of the potential q by its regularized version.

In both cases above, the need for setting boundary conditions at the endpoints
of the interval I is determined rather easily. Say, for the (typical) case of I being
a semi-axis (0,∞) and the potential being bounded at infinity, to define the self-adjoint
operator, one does not need to set a boundary condition at infinity, and at the finite
endpoint this issue is determined by the behavior of q(x) as x→ 0. Under some minor
regularity conditions, if q(x)→ +∞ faster than x−2 as x→ +0, the point zero is of
limit point type, so no boundary condition at 0 is needed. On the other hand, if q(x)
is bounded near 0, or grows slower than x−2, one needs to set a boundary condition
at zero- it is of limit circle type. The infinite endpoint is always of limit point type, as
long as the potential is lower semibounded.

Before we pass to the case of the potential being not lower semibounded, we refer
to an interesting discussion of the above topic in the classical book [15], Section
X.1A. Here the property of the “limit point” is called “quantum completeness”, which
corresponds to the self-adjointness of the operator. The meaning of self-adjointness
consists in the fact that in the quantum complete case, the evolutional Schrödinger
equation −i∂u/∂t = Hu (with proper initial condition) has a unique solution, global
in t. This property is compared with the “classical completeness”: the existence of the
solution, global in t of the equation x′′(t) = −dq/dx for any initial data x(0), x′(0)
with x(0) ∈ I. This means that a classical “particle”, starting its movement in the
field with potential q(x) at a point x(0) with some initial velocity, never, in a finite
time, reaches an endpoint of the interval nor goes to infinity. Thus, the motion of the
“particle” is defined for all times. On the other hand, if the motion is not classically
complete, i.e., the particle at t = tc reaches an endpoint or goes to infinity, in order to
define its motion after t = tc, we need to describe a “law of reflection”, which means
that the particle reflects from the endpoint or infinity, but, possibly, with the phase
change. The choice of this law corresponds to the boundary condition one has to set
at the boundary point of limit circle type, and the limit circle itself parameterizes
these reflection laws. The discussion of this issue in [15] demonstrates, however, certain
limitations in the treatment of two types of completeness.



112 Medet Nursultanov and Grigori Rozenblum

Now we pass to the case when the potential q(x) is not (essentially) lower semi-
bounded. We denote h(x) = −q(x) and suppose that h(x) → +∞ as x approaches
the endpoint ∞ of the interval I = (x0,∞). Suppose that h′(x) has constant sign at
infinity. From the point of view of the classical completeness, the particle is accelerated
by the potential q(x), as it tends to infinity. So, the classical completeness question
is resolved by finding out, if it accelerates sufficiently fast to reach the endpoint in
a finite time – or not. It was found out in [17] that, again under some local and global
regularity assumptions, the required rate of growth of h(x), x → ∞, is determined
by the integral

∫∞(K + h(x))− 1
2 dx for K sufficiently large: if this integral diverges,

then x = ∞ is of limit point type, and it is of limit-circle type otherwise, i.e., if
this integral converges. Moreover, the spectral properties in these two cases differ
drastically: in the former case, the spectrum covers the whole real axis, while in the
latter case the spectrum is discrete and not semibounded. Here, again, the conditions
on the potential granting quantum completeness coincide with the ones for the classical
completeness, provided sufficient local regularity is supposed. Note that here, in the
limit-circle case, the above “phase change” picture does not work directly, since the
solutions oscillate rapidly when approaching the singular endpoint. So, the additionally
boundary condition is set by choosing those functions as belonging to the domain
of the operator, for which the solutions of the equation, with these functions on the
right-hand side, are ’almost’ proportional to a chosen solution of the homogeneous
equation - this latter solution parameterizes self-adjoint boundary conditions.

The study of the asymptotic behavior of eigenvalues of the Sturm-Liouville operator
on (0,∞), with q(x) bounded near zero and tending to −∞ at infinity sufficiently fast,
so that the limit circle at infinity takes place, started in 1954, see [9]. The specifics of the
problem required a new approach. The operator is not semi-bounded, so the variational
method, very efficient for semi-bounded operators, could not be applied. Bookkeeping
zeroes of solutions, also widely used for semi-bounded problems (the number of the
eigenfunction for a regular problem is closely related to the quantity of its zeroes),
could not be applied either, since all solutions oscillate rapidly at infinity and have
infinitely many zeroes. P. Heywood found in [9] a modification of the zero-counting
method. First, the problem on the finite interval (0, b) was considered, with some
boundary conditions set at the point b. The corresponding operator is denoted Hb.
For fixed λ > 0,−µ < 0, the quantities N(Hb; (0, λ)) and N(Hb; (−µ, 0)) are studied.
This is achieved by evaluating the number of zeroes n(b, s) of the solutions of the
equation (H − s)y = 0 on the interval (0, b) for s = 0, s = λ and s = −µ. Although, as
b→∞, each of these quantities grows unboundedly, the differences n(b, λ)−n(b, 0) and
n(b, 0)− n(b,−µ) turn out to be bounded, uniformly in b, and, moreover, they admit
an explicit expression, not depending on b, with an error term, uniformly bounded
in b. This information on the zeroes produces the expressions for N(Hb; (0, λ)) and
N(Hb; (−µ, 0)). The final step consists in proving that these expressions converge, as
b→∞, to the corresponding counting functions for the operator on the semiaxis.

This result in [9] differs drastically from the ones for the semibounded case. In the
60 years that passed since, no semi-classical explanation of this formula was found.
Some regularity conditions, to be specified later on, are imposed, the first one being
the (eventual) monotonicity of the potential q(x), and the asymptotic formulas, with
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h(p(µ)) = µ, are

N(H, (0, λ)) = π−1
∞∫

0

[(λ+ h(x)) 1
2 − h(x) 1

2 ]dx+O(1), λ > 0, (1.4)

N(H, (−µ, 0)) = π−1
p(µ)∫

0

h(x) 1
2 dx+ π−1

∞∫

p(µ)

[h(x) 1
2 − (h(x)− µ) 1

2 ]dx+O(1). (1.5)

Much later, in 1974, without (initially) knowing about [9], the problem of the
eigenvalue asymptotics for the case q(x) → −∞ was considered by Belogrud and
Kostuchenko, [7]. Actually, a short note, without proofs, appeared in [7], but a more
detailed exposition was published in (now inaccessible) [6], with the final presentation
filling chapters 5 and 9 in the book [10]. An approach, different from the one in [9] was
used. An asymptotic expression, uniform both in λ and x, was found for the solutions
of the equation (H − λ)y = 0 for λ in a special complex region. Using this result,
an asymptotic formula was derived for the trace of the resolvent of H in this complex
region. Finally, a specially constructed Tauberian theorem produced formulas (1.4),
(1.5). The reasoning and calculations in [10] are much more complicated and laborious
than the ones in [9], however the conditions imposed on the potential are less restrictive:
no assumptions on the second derivative are made. Moreover, as it is shown in [10],
the method used can be applied to some higher order non-semibounded operators.

Further activities in this topic concentrated in improving the asymptotic estimates.
This is impossible to do in the terms of the counting function: since N(H, (λ1, λ2)) is
an integer, a remainder estimate better than O(1) is impossible. On the other hand,
if a formula is found, expressing the eigenvalues themselves in an implicit form as
solutions of some equations, such results can give improved asymptotic formulas for
the eigenvalues, with a higher order of accuracy. The first result of this kind was
obtained by Alenitsyn in [1]. By finding an asymptotic expression, with several terms,
of solutions of the equation, using the WKB method, Alenitsyn derived two-term
equations (for the positive and for the negative spectrum) determining the eigenvalues
in an implicit form. An important feature of this sharpening is that one can trace
the dependence of the eigenvalue asymptotics on the parameter fixing the self-adjoint
extension by setting the boundary conditions at infinity - which was impossible by the
previously used methods.

Some years later, a series of papers by F. Atkinson and C. Fulton appeared, see [2–4].
In the seminal paper [2] a new approach to non-semibounded problems is presented,
based upon a modified Prüfer transform, reducing the second order linear equation to
a system of first order nonlinear equations, for which the asymptotic analysis becomes
more feasible. Besides deriving an improved Heywood formula, in Alenitsyn style, and
demonstrating a number of interesting examples and consequences, the authors in [2]
announce subsequent papers, [3–5], where the approach would be developed further,
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in order to give algorithmically arbitrary many higher order terms in the implicit
expression for the eigenvalues. The three cases announced are:

1. The problem on (0,∞) with q(x) tending to −∞ faster than −x2 at infinity;
2. The problem on (0, 1) with q(x) behaving like Cx−α, α ∈ [1, 2) near zero;
3. The problem on (0, 1) with q(x) behaving like −x−α, α > 2 near zero.

The papers [3, 4], containing the analysis of the cases (1) and (2), have appeared.
However, the paper [5], although announced several times, was never published.

Thus, a strange situation had arisen. A rather complete spectral analysis of the
singular non-semibounded Sturm-Liouville operator on the semi-axis with singularity
at infinity was performed long ago, while for the complementing case, the potential
tending rapidly to −∞ at the finite endpoint remains completely unresolved.

The present paper is devoted to filling this gap. We modify the approach initiated
by Heywood and find the asymptotic formulas for the eigenvalue counting functions.
We have in mind to investigate also the possibility of modifying the approach by
Alenitsyn for the case in question, in order to obtain improved asymptotic eigenvalue
formulas.

We need, however, to start by presenting (in Sect. 2) the version of Weyl’s limit-point
– limit-circle theory for a finite singular point. By some tradition, set quite long ago, in
the exposition of this theory, one considers the infinite singular point, just mentioning
that the case of a finite singular point is treated in a similar way. We check that, in
fact, the reasoning is mainly similar (and we follow essentially the presentation in
[19]), however some important details need to be elaborated anew. Then, in Sect. 3 we
find sufficient analytical conditions on the singular negative potential q, granting that
the finite endpoint is of limit-circle type. The main part of the paper is devoted to
finding the asymptotic formulas for eigenvalues. These formulas show, in particular, the
presence of a new effect, not existing for the limit-circle problem at infinity, considered
previously. Namely, it turns out that the asymptotics for the positive eigenvalues,
according to the formula obtained, is the same, at least in the leading term, for all
potentials subject to the regularity conditions, in particular, the same as for the regular
problem. On the other hand, the asymptotics for the negative eigenvalues depends
essentially on the potential. Moreover, it turns out that, asymptotically, there are
fewer negative eigenvalues than positive ones, on intervals of the same length. In the
concluding part of the paper we present calculations for several interesting examples
of potentials.

2. GENERAL CONSIDERATIONS. WEYL’S FUNCTION

In this section we present some, mostly known, formal relations concerning the Weyl
function for Sturm-Liouville operator H = − d2

dx2 + q(x). These relations were obtained
in [19] for semi-axis case. Here we repeat them for the case of a finite interval with
a singularity at one end point. As it mentioned in [19], it was effectuated similarly.

From now on, we consider Sturm-Liouville spectral problem (1.1) with x0 = 0,
x1 = 1, and a negative singularity at zero. Let q(x) be a continuous real-valued
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function on I = (0, 1], (a, b] ⊂ I. For complex numbers λ, λ′ let F (x), G(x) be
functions such that

(λ−H)F (x) = (λ′ −H)G(x) = 0.

Then we have

(λ′ − λ)
b∫

a

F (x)G(x)dx =
b∫

a

[F (x)(q(x)G(x)−G′′(x))−G(x)(q(x)F (x)− F ′′(x))]dx

= −
b∫

a

[F (x)G′′(x)−G(x)F ′′(x)]dx = Wa(F,G)−Wb(F,G),

(2.1)

where

Wx(F,G) =
∣∣∣∣
F (x) G(x)
F ′(x) G′(x)

∣∣∣∣ (2.2)

is the Wronskian of the functions F,G. If λ′ = λ, b = 1 and G = F , this gives

2 Imλ

1∫

a

|F (x)|2dx = iWa(F, F )− iW1(F, F ). (2.3)

We consider two special solutions of (1.1). Let φ(x) = φ(x, λ), θ(x) = θ(x, λ) be
the solutions of (1.1) satisfying the boundary conditions at the point x = 1:

φ(1) = sinα, φ′(1) = − cosα,
θ(1) = cosα, θ′(1) = sinα,

where α is real. Then Wx(φ, θ) = W1(φ, θ) = 1.
Using these solutions, we will obtain a number of relations connecting the (spectral)

parameter λ and the parameter in the expression of the general solution via the
solutions fixed above, when a certain boundary condition is set at a point a ∈ I.

The general solution, up to a constant factor, can be written as u(x) = θ(x)+ lφ(x).
This solution satisfies the boundary condition

u(1)(sinα− l cosα)− u′(1)(cosα+ l sinα) = 0 (2.4)

at the right endpoint of our interval I.
Now we consider such solution that additionally satisfies the boundary condition

at some point x = a, a ∈ I:

u(a) cosβ + u′(a) sin β = (θ(a) + lφ(a)) cosβ + (θ′(a) + lφ′(a)) sin β = 0, (2.5)
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where β is real. Of course, by varying β, we obtain all possible solutions of the equation,
satisfying (2.4). On the other hand, having fixed some β in (2.5), we can find the
parameter l in (2.4) by

l = l(λ) = − θ(a) cotβ + θ′(a)
φ(a) cotβ + φ′(a) . (2.6)

For each a, as cotβ varies, l draws a circle Ca in the complex plane. Replacing cotβ
in (2.6) by a complex variable z, we obtain

l = l(λ, z) = − θ(a)z + θ′(a)
φ(a)z + φ′(a) .

Here l = ∞ corresponds to z = −φ
′(a)
φ(a) . Hence the center of Ca corresponds to the

value z =
(
−φ′(a)
φ(a)

)
, and therefore, at the center,

l = l

(
λ,−φ

′(a)
φ(a)

)
= −−θ(a)φ′(a) + θ′(a)φ(a)
−φ(a)φ′(a) + φ′(a)φ(a)

= −Wa(θ, φ)
Wa(φ, φ)

.

Also, we have

Im
(
−φ
′(a)
φ(a)

)
= i

2

(
φ′(a)
φ(a) −

(
φ′(a)
φ(a)

))
= − i2

Wa(φ, φ)
|φ(a)|2 ,

which has the same sign as − Imλ, by (2.3), since W1(φ, φ) = 0. Hence, if Imλ > 0,
the exterior of the circle Ca corresponds to Im z < 0 and the interior corresponds to
Im z > 0.

Since

− Im z = i

2(z − z) = i

2

(
− lφ

′(a) + θ′(a)
lφ(a) + θ(a) +

(
lφ′(a) + θ′(a)
lφ(a) + θ(a)

))

= i

2|lφ(a) + θ(a)|2
(
|l|2Wa(φ, φ) +Wa(θ, θ) + lWa(φ, θ) + lWa(θ, φ)

)

= iWa(θ + lφ, θ + lφ)
2|lφ(a) + θ(a)|2 ,

(2.7)

we have, by (2.3), that Im z > 0 if and only if

2 Imλ

1∫

a

|θ + lφ|2dx < −iW1(θ + lφ, θ + lφ) = 2 Im l.

Hence, in case Imλ > 0, l is inside Ca iff
1∫

a

|θ + lφ|2dx < Im l

Imλ
.
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The same holds for Imλ < 0. In each case Im l has the same sign as Imλ. It follows
that, if l is inside Ca and 0 < a < a′ < 1, then

1∫

a′

|θ + lφ|2dx <
1∫

a

|θ + lφ|2dx < Im l

Imλ
.

Hence l is also inside Ca′ . Therefore, Ca′ contains Ca if a < a′. It follows that, as
a↘ 0, the circle Ca shrinks and thus it converges either to a circle (a.k.a. limit-circle)
or to a single point (a.k.a. limit-point).

If m = m(λ) is the limit-point, or any point on the limit-circle,
1∫

a

|θ + lφ|2dx < Imm

Imλ

for all values of a. Hence
1∫

0

|θ + lφ|2dx < Imm

Imλ
.

It follows that for every nonreal of λ , (1.1) has a solution

ψ(x, λ) = θ(x, λ) +m(λ)φ(x, λ)

belonging to L2(0, 1).
Next lemma was proved in [19]. We give its proof for sake of completeness.

Lemma 2.1. For real β, l = l(λ) is a meromorphic function of λ, with simple poles
on the real axis, and thus m(λ) is an analytic function in the upper and the lower
halfplanes of the λ-plane.
Proof. By (2.6) the poles of l(λ) are the zeros of

φ(a, λ) cosβ + φ′(a, λ) sin β.

But this zeros are eigenvalues of the following problem:




−y′′ + q(x)y = λy, x ∈ [a, 1],
y(1, λ) cosα+ y′(1, λ) sinα = 0,
y(a, λ) cosβ + y′(a, λ) sin β = 0.

Hence this poles are simple.
The above argument shows that, for a fixed λ, the region of the l-plane inside Ca

shrinks as a decreases. Hence l(λ) = l(λ, a, β) is uniformly bounded in any compact
region lying entirely in the upper or lower halfplane. Then, in the limit-circle case,
there exist sequences {ak}∞k=1 and {βk}∞k=1 such that the limit

lim
k→∞

l(λ, ak, βk) = m(λ)

exists in each half of λ-plane and this limit is an analytic function. In the limit-point
case, l(λ) has an unique limit m(λ), which is an analytic function.
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The reasoning above means that the operator H0 = − d2

dx2 + q(x), with boundary
condition (2.4) and the zero condition at 0, is not essentially selfadjoint, since the
equation H∗0u− λu = 0 has nontrivial L2 solutions for nonreal λ: in fact, the operator
without any boundary condition at 0 is exactly the adjoint operator H∗0 . The space
of these solutions is one-dimensional (like any space of solutions of a second-order
differential equation with one boundary condition set). Thus, in order to obtain
a self-adjoint operator, we need to set a boundary condition at the point x = 0. This
condition determines the way how the solutions of the equation behave as approaching
the left endpoint of our interval.

Similar to the case of the singular point at infinity, considered, for example,
in [12, Theorem 2.3.2], this boundary condition has the form

lim
x→0

W{f,Eλ} = 0, (2.8)

where Eλ(x) =
∫ λ

0+ ϕ(x, λ′)dρ(λ′) and ρ(λ) is the spectral function of the operator in
Weyl sense.

This boundary condition describes the asymptotic oscillation of the solutions when
approaching the endpoint. It is hard to be expressed explicitly – in fact, we do not
need an explicit expression for this condition. Note, however the paper [8], where for
a problem of the type we consider, a physical meaning is assigned to this boundary
condition.

3. PROPERTIES OF THE m-FUNCTION AND THE NATURE
OF THE SPECTRUM FOR A POTENTIAL
WITH STRONG NEGATIVE SINGULARITY AT THE ENDPOINT

Now we formulate the general conditions imposed on the potential q(x) and derive
some properties of the m-function for this case.

Lemma 3.1. Let q(x) be a differentiable function on (0, 1) such that q′(x) > 0,
q(x)→ −∞ as x→ 0, q′′(x) is ultimately of one sign and

q′(x) = O(|q(x)|)c, (3.1)

for 0 < c < 3
2 . Then m(λ) is a meromorphic function with simple poles on the real

axis, and the whole spectrum of the problem (1.1) is discrete.

Proof. Let φ(x) = φ(x, λ) be the solution of (1.1) which satisfies the boundary
conditions

φ(1) = sinα, φ′(1) = − cosα.

We set

ξ(x, λ) :=
1∫

x

(λ− q(t)) 1
2 dt, p(x, λ) = (λ− q(x))− 1

4 ,
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R(x, λ) := − q′′(x)
4(λ− q(x)) 3

2
− 5(q′(x))2

16(λ− q(x)) 5
2
.

The expression for R(x, λ) occurs naturally from the basic equation (1.1) (see [19, 5.8]).
Let ρ be a real constant such that ρ− q(x) > 0 for 0 < x ≤ 1. Then

1∫

x

p(t, ρ)(q(t)− λ)φ(t) sin(ξ(x, ρ)− ξ(t, ρ))dt

=
1∫

x

p(t, ρ)φ′′(t) sin(ξ(x, ρ)− ξ(t, ρ))dt = p(1, ρ)φ′(1) sin ξ(x, ρ)

−
1∫

x

φ′(t)
(
p′(t, ρ) sin(ξ(x, ρ)− ξ(t, ρ)) + p(t, ρ) cos(ξ(x, ρ)− ξ(t, ρ))(ρ− q(t)) 1

2

)
dt

= −p(1, ρ) cosα sin ξ(x, ρ) + φ(x)(ρ− q(x)) 1
4 − p′(1, ρ) sinα sin ξ(x, ρ)

− sinα(ρ− q(1)) 1
4 cos ξ(x, ρ)

+
1∫

x

φ(t)
(
p′′(t, ρ)− p(t, ρ)(ρ− q(t))

)
sin(ξ(x, ρ)− ξ(t, ρ))dt

+
1∫

x

φ(t)
(

2p′(t, ρ)(ρ− q(t)) 1
2 − 1

2p(t, ρ) q′(t)
(ρ− q(t)) 1

2

)
cos(ξ(x, ρ)− ξ(t, ρ))dt.

Hence,

φ(x)(ρ− q(x)) 1
4

=
(

cosα
(ρ− q(1)) 1

4
+ 1

4
q′(1) sinα

(ρ− q(1)) 5
4

)
sin ξ(x, ρ) + (ρ− q(1)) 1

4 sinα cos ξ(x, ρ)

+
1∫

x

φ(t)(ρ− q(t)) 1
4

(
ρ− λ

(ρ− q(t)) 1
2
−R(t, ρ)

)
sin(ξ(x, ρ)− ξ(t, ρ))dt.

(3.2)

Now we define the functions

φ1(x) = φ(x)(ρ− q(x)) 1
4 , R1(t) = ρ− λ

(ρ− q(t)) 1
2
−R(t, ρ).

Note that
1∫

0

|R1(t)|dt <∞.
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Indeed, from (3.1) it follows
1∫

0

(q′(t))2dt

(ρ− q(t)) 5
2

=
1∫

0

q′(t)
(ρ− q(t))c

q′(t)dt
(ρ− q(t)) 5

2−c

≤ Cρ
1∫

0

q′(t)dt
(ρ− q(t)) 5

2−c
= Cρ

+∞∫

q(1)

ds

(ρ− s) 5
2−c

<∞,

where Cρ depends on ρ only, and

1∫

0

q′′(t)dt
(ρ− q(t)) 3

2
=
[

q′(t)dt
(ρ− q(t)) 3

2

]1

0
+ 3

2

1∫

0

(q′(t))2dt

(ρ− q(t)) 5
2
<∞.

In terms of the new functions, (3.2) can be written as

φ1(x) = A cos ξ(x, ρ) +B sin ξ(x, ρ) +
1∫

x

φ1(t)R1(t) sin(ξ(x, ρ)− ξ(t, ρ))dt.

By Grönwall’s inequality, it follows that φ1(x) is bounded and

φ1(x) = A cos ξ(x, ρ) +B sin ξ(x, ρ)

+
1∫

0

φ1(t)R1(t) sin(ξ(x, ρ)− ξ(t, ρ))dt+ o(1),
(3.3)

where A and B are independent of λ, and the integral converges uniformly over any
bounded λ-region, and therefore represents an entire analytic function of λ variable.
We have, therefore, as x→ 0,

φ(x)(ρ− q(x)) 1
4 = γ(λ) cos ξ(x, ρ) + δ(λ) sin ξ(x, ρ) + o(1), (3.4)

where γ(λ) and δ(λ) are entire functions of λ.
Similarly, by using the differentiated form of (3.3) we obtain

φ′(x)(ρ− q(x))− 1
4 = −δ(λ) cos ξ(x, ρ) + γ(λ) sin ξ(x, ρ) + o(1). (3.5)

Further on, if θ(x, λ) is the solution of (1.1) such that

θ(1, λ) = cosα, θ′(1, λ) = sinα,

we have
θ(x)(ρ− q(x)) 1

4 = γ1(λ) cos ξ(x, ρ) + δ1(λ) sin ξ(x, ρ) + o(1), (3.6)

θ′(x)(ρ− q(x))− 1
4 = −δ1(λ) cos ξ(x, ρ) + γ1(λ) sin ξ(x, ρ) + o(1), (3.7)

where γ1(λ) and δ1(λ) are also entire analytic functions of λ.
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Again we note that θ(x, λ) and φ(x, λ) both belong to L2(0, 1) for all values of λ,
so we are in Weyl’s limit-circle case.

Substituting (3.4)-(3.7) into the right hand side of (2.6), and setting

cotβ = (ρ− q(a)) 1
2 cotβ′,

we obtain

l(λ) = −γ1(λ) cos(ξ(a, ρ)− β′) + δ1(λ) sin(ξ(a, ρ)− β′) + o(1)
γ(λ) cos(ξ(a, ρ)− β′) + δ(λ) sin(ξ(a, ρ)− β′) + o(1) .

We choose β′ as a function of a so that ξ(a, ρ)− β′ = κ, and obtain

l(λ)→ −γ1(λ) cosκ+ δ1(λ) sin κ
γ(λ) cosκ+ δ(λ) sin κ ,

as a tends to 0. When κ varies, this equation describes a circle, which is the limit-circle
in question. Thus, in the notation of the previous section,

m(λ) = −γ1(λ) cosκ+ δ1(λ) sin κ
γ(λ) cosκ+ δ(λ) sin κ .

For any κ fixed, which, again, corresponds to fixing the boundary condition at the
singular point, this equation describes a meromorphic function of λ variable, and
the eigenvalues of the operator with this boundary condition are its poles. In particular,
this means that the whole spectrum is discrete.

4. COUNTING ZEROS OF SOLUTIONS

This is the most technical part of the paper. Therefore, it is proper to explain what is
going on, before making complicated calculations.

It is known that for a regular Sturm-Liouville problem on a finite interval, the
eigenvalues are counted by counting the number of zeros on this interval of the
corresponding eigenfunctions. For our singular problem, each eigenfunction oscillates
rapidly near the singular endpoint and has therefore infinitely many zeros. So, the
idea, initially implemented by P.Heywood, consists in finding for the eigenfunctions
in question rather sharp two-sided estimates for the zeros on an interval (a, 1), with
a > 0. This leads to two-sided estimates for the counting functions of the eigenvalues
of a regular problem on this finite interval. In the next section we will show that these
eigenvalue estimates admit passage to the limit as a→ 0.

It is hard to count zeros of eigenfunctions when these eigenfunctions are not known.
Therefore we construct some other functions, for which the counting task is somewhat
easier, while the number of their zeros differs from the one for the eigenfunctions in
a controllable way.

In the previous section we imposed conditions on the potential q(x) granting the
limit-circle case at x = 0 for the equation (1.1). Now, in order to study the asymptotics
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of the eigenvalues, we need some additional properties of the potential. These conditions
will be expressed in terms of the function h(x) = −q(x).

Let h(x) be a twice-differentiable function on (0, 1] which satisfies the following
conditions:
(A) h(1) = 0;
(B) h′(x) is negative when x ∈ (0, 1);
(C) h′′(x) is ultimately of one sign;
(D) h′′(x) = O(|h′(x)|)γ where 1 < γ < 4

3 ;
(E) |h′(x)|

(h(x))d increases monotonically for some constant d < 3
2 ,

where (C), (D) and (E) hold for x close to zero.
We consider the eigenvalue problem associated with the differential equation

d2y

dx2 + (λ+ h(x))y = 0, (4.1)

in the interval (0, 1), and the boundary condition

y(1) cosα+ y′(1) sinα = 0. (4.2)

Note that condition (D) implies

|h′(x)| = O(h(x))c, (4.3)
where c = 1

2−γ <
3
2 . Indeed,

|h′(x)| =

∣∣∣∣∣∣

1∫

x

h′′(t)dt− h′(1)

∣∣∣∣∣∣
= O




1∫

x

|h′(t)|γdt




= O


|h′(x)|γ−1

1∫

x

|h′(t)|dt


 = O

(
|h′(x)|γ−1h(x)

)
.

Hence
|h′(x)|2−γ = O(h(x)).

Let φ(x, λ) be the solution of (4.1) such that

φ(1, λ) = sinα, φ′(1, λ) = − cosα. (4.4)

First we find the number of zeros of φ(x, λ) on (a, 1) when λ is positive and sufficiently
large. For this, we need a technical lemma.
Lemma 4.1. For λ sufficiently large, the integrals

A =
1∫

0

(h′(x))2dx

(λ+ h(x)) 5
2
, B =

1∫

0

h′′(x)dx
(λ+ h(x)) 3

2

converge and are bounded uniformly in λ.
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Proof. Fix X ∈ (0, 1). Since the function (h′(x))2

(λ+h(x))
5
2
is continuous and decreasing,

A =
X∫

0

(h′(x))2dx

(λ+ h(x)) 5
2

+O(1) = O




X∫

0

|h′(x)|(h(x))cdx
(λ+ h(x)) 5

2


+O(1).

We make the change of the variable h(x) = λt, and then

A = O




+∞∫

h(X)
λ

λ(λt)cdt
(λ+ λt) 5

2


+O(1) = λc−

3
2O

(∫ +∞

h(X)
λ

tcdt

(1 + t) 5
2

)
+O(1)

≤ λc− 3
2

∫ +∞

0

tcdt

(1 + t) 5
2

+O(1) ≤ Cc−
3
2

1 K.

Hence, A is bounded for λ > C1. By integrating by parts, we have

B =
X∫

0

h′′(x)dx
(λ+ h(x)) 3

2
+O(1) =

[
h′(x)

(λ+ h(x)) 3
2

]X

0
+ 3

2

X∫

0

(h′(x))2dx

(λ+ h(x)) 5
2

+O(1).

Then the second result follows from (4.3) and the first one.

Now we define the continuous function ζ(x) :

ζ(x) = tan−1

(
(λ+ h(x)) 1

2φ(x, λ)
φ′(x, λ)

)
, x ∈ (0, 1], λ > 0

with 0 ≤ ζ(1) ≤ π. The continuity condition governs the choice of the branch of tan−1

at the points where φ′ = 0. We differentiate to obtain

ζ ′(x) = (λ+ h(x)) 1
2 + 1

4h
′(x)(λ+ h(x))−1 sin 2ζ

= (λ+ h(x)) 1
2 + 1

4h
′(x)(λ+ h(x))− 3

2 sin 2ζ
(
ζ ′(x)− 1

4h
′(x)(λ+ h(x))−1 sin 2ζ

)
,

(4.5)

and the integration gives

ζ(1)− ζ(a) =
1∫

a

(λ+ h(x)) 1
2 dx+ 1

4I1 −
1
16I2, (4.6)

where

I1 =
1∫

a

h′(x)ζ ′(x) sin 2ζdx
(λ+ h(x)) 3

2
, I2 =

1∫

a

(h′(x))2 sin2 2ζdx
(λ+ h(x)) 5

2
.
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Now, by Lemma 4.1, I2 is bounded for λ > C1. We integrate by parts:

I1 =
[
−

1
2h
′(x) cos(2ζ)

(λ+ h(x)) 3
2

]1

a

+ 1
2

1∫

a

(
h′′(x)

(λ+ h(x)) 3
2
−

3
2 (h′(x))2

(λ+ h(x)) 5
2

)
cos 2ζdx.

The integral term is bounded at the upper limit since λ > C1 and at the lower limit
since h′(x) = o(h(x)) 3

2 . Hence, by Lemma 4.1, I1 is bounded for λ > C1. So, we have

ζ(1)− ζ(a) =
1∫

a

(λ+ h(x)) 1
2 dx+O(1), (4.7)

where the error term is bounded for λ > C1 and for all a > 0.
We write (4.5) in the form

ζ ′(x) = (λ+ h(x)) 1
2

(
1 +

1
4h
′(x) sin 2ζ

(λ+ h(x)) 3
2

)
.

Since |h′(x)| = O(h(x)) 3
2 , we have h′(x)(h(x))− 3

2 < 1, say, for x < A. But h′(x) is
continuous on (0, 1], and it is therefore bounded on [A, 1]. Then for sufficiently large
λ, say, greater than C2, we have ζ ′(x) > 0. Therefore ζ(x) is monotonic increasing.

Since φ(x, λ) is a non-trivial solution of (4.1), φ and φ′ cannot vanish simultaneously.
Therefore, zeros of φ(x, λ) occur if and only if ζ(x) is equal to an integer multiple of π.
Let N1 be the number of zeros of φ(x, λ) on the interval (a, 1). Then, by (4.7),

N1 = 1
π

1∫

a

(λ+ h(x)) 1
2 dx+O(1). (4.8)

Next we consider negative values of λ and write µ = −λ.

Lemma 4.2. For h(x) as above, we have h′(x) → −∞ as x → 0 and h′′(x) > 0
for x > 0.

Proof. By conditions (B) and (C), we know that h′(x) is negative and monotonic on
(0, X), X ≤ 1. Hence, as x tends to zero, h′(x) tends to minus infinity or to a finite
limit. But, if it had finite limit, |h′(x)| would be less than some bound M . On the
other hand, the mean value theorem gives, for some α ∈ [x,X],

h(x) = h(X) + h′(α)(x−X) ≤ h(X)−M(x−X).

The left-hand side tends to infinity as x→ 0, while the right-hand side is bounded. So
h′(x) must tend to minus infinity when x approaches zero. Additionally, this reasoning
implies that h′′(x) > 0 for x sufficiently close to zero, therefore, by (C), it is positive
for x ∈ (0, 1].
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Since the function h(x) decreases monotonically in (0, 1] and tends to plus infinity
as x tends to zero, we can define for any positive value of µ a unique positive number
p = p(µ) by

h(p) = µ.

Now suppose that µ ≥ h(X), so that p(µ) ≤ X. Then, by Lemma 4.2, the function
(x − p)(h′(x)) 1

3 decreases on (0, p) and limx→0(x − p)(h′(x)) 1
3 = +∞. Hence there

exists a unique point P = P (µ) such that P (µ) < p(µ) and

(P − p)(h′(P )) 1
3 = 1. (4.9)

By the mean value theorem,

h′(p)− h′(P ) = (p− P )h′′(α),

for some α ∈ [P, p], therefore,

h′(p) ≤ h′(P ) + (p− P ) max
x∈[P,p]

h′′(x),

and so, by (D) and (4.9),

h′(p) ≤ h′(P ) + C(p− P )|h′(P )|γ

= h′(P ) + (p− P )|h′(P )| 13C|h′(P )|γ− 1
3 = h′(P ) + C|h′(P )|γ− 1

3 ,

or equivalently,
−h′(p) ≥ −h′(P )

(
1− C|h′(P )|γ− 4

3

)
.

Since γ < 4
3 , the right-hand side tends to −h′(P ) when µ goes to infinity. Therefore,

−h′(p) ≥ −1
2h
′(P ), (4.10)

for µ > C3 > h(X), where C3 is a suitable large constant.
Using (4.9) and (4.10), we have, for µ > C3,

h(P )− µ = h(P )− h(p) ≤ (P − p)h′(P ) = (h′(P )) 2
3 (4.11)

and
h(P )− µ ≥ (P − p)h′(p) ≥ −1

2h
′(P )(p− P ) = 1

2(h′(P )) 2
3 . (4.12)

Further we need an estimate, similar to the one in Lemma 4.1.
Lemma 4.3. The integrals

U =
P (µ)∫

0

(h′(x))2dx

(h(x)− µ) 5
2
, V =

P (µ)∫

0

h′′(x)dx
(h(x)− µ) 3

2

converge and are bounded for µ > C3.
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Proof. From (E) we know that −h
′(x)

(h(x))d increases, where d is a positive number,
by Lemma 4.2. Hence, the function

− h′(x)
(h(x)− µ)d = −h

′(x)
(h(x))d ·

1
(1− µ

h(x) )d

is monotonically increasing on (0, p(µ)], provided µ > h(X). Therefore, if µ > C3,

U ≤ −h′(P )
(h(P )− µ)d

P (µ)∫

0

−h′(x)dx
(h(x)− µ) 5

2−d
= −h′(P )

(h(P )− µ)d




+∞∫

h(P )

dt

(t− µ) 5
2−d




= − h′(P )
(h(P )− µ)d ·

(h(P )− µ)− 3
2 +d

3
2 − d

= − h′(P )
(h(P )− µ) 3

2
· 1

3
2 − d

.

Further, by (4.12), we have

U ≤ 1
3
2 − d

· −h′(P )
( 1

4 ) 1
3 |h′(P )|

= 2
√

2
3
2 − d

.

We integrate V by parts to obtain

V =
[

h′(x)
(h(x)− µ) 3

2

]P (µ)

0
+ 3

2

P (µ)∫

0

(h′(x))2dx

(h(x)− µ) 5
2
.

But
−h′(x)

(h(x)− µ) 3
2
≤ −h′(x)

(h(x)− µ)d = O(1),

when x→ 0. Then V = 3
2U +O(1) which is bounded.

Let φ(x, λ) be the solution of (4.1) which satisfies (4.2), and suppose that µ > C3.
We define for positive values of x and λ the continuous function η(x) by the formula

η(x) = tan−1

(
(h(x)− µ) 1

2φ(x, λ)
φ′(x, λ)

)
,

where 0 ≤ η(1) ≤ π. Again, the continuity condition determines the choice of the
branch of tan−1. Then

η′(x) = (h(x)− µ) 1
2 + 1

4h
′(x)(h(x)− µ)−1 sin 2η

= (h(x)− µ) 1
2 + 1

4h
′(x)(h(x)− µ)− 3

2 sin 2η
(
η′(x)− 1

4h
′(x)(h(x)− µ)−1 sin 2η

)
.

(4.13)
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The integration gives

η(P )− η(a) =
P∫

a

(h(x)− µ) 1
2 dx+ 1

4I3 −
1
16I4, (4.14)

where, for a < P ,

I3 =
P∫

a

h′(x)η′(x) sin 2ηdx
(h(x)− µ) 3

2
, I4 =

P∫

a

(h′(x))2 sin2 2ηdx
(h(x)− µ) 5

2
.

By Lemma 4.3, I4 is bounded, since µ > C3. We integrate by parts:

I3 =
[
−

1
2h
′(x) cos(2η)

(h(x)− µ) 3
2

]P

a

+ 1
2

P∫

a

(
h′′(x)

(h(x)− µ) 3
2
−

3
2 (h′(x))2

(h(x)− µ) 5
2

)
cos 2ηdx.

Condition (E) implies that the function

− h′(x)
(h(x)− µ) 3

2
= −h

′(x)
(h(x))d ·

1
(h(x)) 3

2−d
· 1

(1− µ
h(x) ) 3

2

is positive and increases on (0, P (µ)). Therefore

|I3| ≤ −
h′(P )

(h(P )− µ) 3
2

+ 1
2V + 3

4U,

and I3 is bounded by lemma 4.3. Combining this with (4.14), we have

η(P )− η(a) =
P∫

a

(h(x)− µ) 1
2 dx+O(1), (4.15)

where the error term is bounded for µ > C3 and a < P (µ).
On the other hand, by (4.13),

η′(x) = (h(x)− µ) 1
2

(
1 +

1
4h
′(x) sin 2η

(h(x)− µ) 3
2

)
.

As we noted, the function
∣∣∣h′(x)(h(x)− µ)− 3

2

∣∣∣ is increasing. Hence

∣∣∣∣
1
4h
′(x) sin 2η

(h(x)− µ) 3
2

∣∣∣∣ ≤
∣∣∣∣

1
4h
′(x)

(h(x)− µ) 3
2

∣∣∣∣ ≤
1
4

∣∣∣∣
h′(P )

2
√

2h′(P )

∣∣∣∣ ,

(in the last inequality we used (4.12)). So η′(x) is positive for x < P (µ). Then
η(x) increases for x < P (µ). As before, it follows from the definition of η(x) that
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the number N2 of zeros of φ(x, λ) on the interval 0 < a < x ≤ P (µ), differs at most
by an endpoint correction of size one from (η(P )− η(a))/π. Hence, by (4.15)

N2 = 1
π

P∫

a

(h(x)− µ) 1
2 dx+O(1), (4.16)

provided a < P (µ).
Recall that φ(x, λ) satisfies the differential equation

φ′′ + (h(x)− µ)φ = 0,

and h(x)− µ < h(P )− µ for x > P (µ). Note also that sin[(h(P )− µ) 1
2x] is a solution

of the differential equation

φ′′ + (h(P )− µ)φ = 0.

Now, by Sturm’s comparison theorem ([18, (5.9)]), between any two consecu-
tive zeros of φ(x, λ) there exists at least one zero of sin[(h(P ) − µ) 1

2x]. Therefore,
the number of zeros of φ(x, λ) in the interval P (µ) < x < p(µ) does not exceed
(p− P )(h(P )− µ) 1

2 /π + 2. But, by using (4.9) and (4.11), we obtain

(p− P )(h(P )− µ) 1
2 ≤ (p− P )

(
(h′(P )) 2

3

) 1
2 = −(p− P )(h′(P )) 1

3 = 1 (4.17)

Moreover, since φ(x, λ) has at most one zero in the interval p(µ) ≤ x < 1, the number,
say N3, of zeros of φ(x, λ) in the interval a < x < 1, differs by O(1) from N2. Since,
by (4.17),

p(µ)∫

P (µ)

(h(x)− µ) 1
2 dx ≤ (h(P )− µ) 1

2 (p− P ) ≤ 1,

we have

N3 = 1
π

p∫

a

(h(x)− µ) 1
2 dx+O(1), (4.18)

where the error term is bounded provided µ > C3 and P (µ) < p(µ).
Let N(λ, a) denote the number of zeros of φ(x, λ) on the interval 0 < a < x < 1.

We define the function K(λ, a) for values of λ and a such that λ+ h(a) > 0 by the
formulae

K(λ, a) =





1
π

1∫
a

(λ+ h(x)) 1
2 dx, λ ≥ 0,

1
π

p(|λ|)∫
a

(λ+ h(x)) 1
2 dx , 0 > λ > −h(a).

It will be shown now that

N(λ, a) = K(λ, a) +O(1), (4.19)
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for all positive λ provided a < P (C3), and for all negative λ provided a <
min{P (µ), P (C3)}, where µ = −λ. For λ ≥ C2 and µ ≥ C3 this result has already
been obtained in (4.8) and (4.18).

For −C3 ≤ λ ≤ C2, we have h(x) − C3 ≤ h(x) + λ ≤ h(x) + C2. Then Sturm’s
comparison theorem ([18], (5.9)) shows that

N(−C3, a)− 1 ≤ N(λ, a) ≤ N(C2, a) + 1.

Hence, by (4.19) with λ = −C3, C2, we have, if −C3 ≤ λ ≤ C2 and a < P (C3),

K(−C3, a) +O(1) ≤ N(λ, a) ≤ K(C2, a) +O(1). (4.20)

On the other hand, if −C3 ≤ λ ≤ C2 and a < P (C3), then

K(−C3, a) ≤ K(λ, a) ≤ K(C2, a), (4.21)

since K is a monotonic function of λ when a is fixed. Combining (4.20) and (4.21)
we have
|N(λ, a)−K(λ, a)| ≤ K(C2, a)−K(−C3, a) +O(1)

= 1
π

1∫

a

(C2 + h(x)) 1
2 dx− 1

π

p(C3)∫

a

(−C3 + h(x)) 1
2 dx+O(1)

= 1
π

1∫

p(C3)

(C2 + h(x)) 1
2 dx

+ 1
π

p(C3)∫

a

(C2 + C3)dx
(h(x) + C2) 1

2 + (h(x)− C3) 1
2

+O(1).

The latter expression is bounded since h(x) → +∞ as x → 0. Hence, if a < P (C3),
the difference |N(λ, a)−K(λ, a)| is bounded for −C3 < λ < C2. Then (4.19) holds.

Now we consider the eigenvalue problem for the equation (4.1) on the interval
a ≤ x ≤ 1 with boundary conditions (4.2) and

y(a) cosβ + y′(a) sin β = 0. (4.22)

By [18, (5.11)] there exists an increasing sequence of eigenvalues λ0a, λ1a, λ2a . . . such
that the eigenfunction ψna(x) associated with the eigenvalue λna has precisely n zeros
on the interval a ≤ x ≤ 1. Also, by [18, (1.9)], φ(x, λna) is a multiple of ψna(x) and
therefore has the same zeros. Thus, by (4.19), if a is positive and small enough, then

n = K(λna, b) +O(1).

But K(λ, a) is monotonic in λ for fixed a. Hence, if Ea(λ) denotes the number of
non-negative eigenvalues not exceeding λ,

Ea(λ) = K(λ, a)−K(0, a)+O(1) = 1
π

1∫

a

(
(λ+ h(x)) 1

2 − (h(x)) 1
2

)
dx+O(1). (4.23)
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Similarly, if Fa(µ) denotes the number of negative eigenvalues not exceeding µ by
absolute value,

Fa(µ) = K(0, a)−K(−µ, a) +O(1)

= 1
π

1∫

a

(h(x)) 1
2 dx− 1

π

p(µ)∫

a

(h(x)− µ) 1
2 dx+O(1),

(4.24)

provided a < min{P (µ), P (C3)}.
It follows from (4.23) and (4.24) that the number of eigenvalues in any fixed finite λ

interval (λ1, λ2) is bounded as a tends to zero.

5. DISTRIBUTION OF EIGENVALUES

By Lemma 3.1, in order to describe the distribution of the eigenvalues, we need to
study the distribution of the poles of the function m(λ).

We fix a positive number Λ. We proved in the previous section that, for the problem
on (a, 1), the number of eigenvalues in the interval [0,Λ] is bounded as a tends to zero.
Then there must exist an integer R and an infinite sequence {ak}∞k=0, ak → 0, such that
Eak(Λ) = R. We choose the smallest of such R. Denote by 0 ≤ λ1,ak ≤ . . . ≤ λR,ak ≤ Λ
the eigenvalues in (0,Λ), corresponding to the problem on (ak, 1).

By compactness, we can find a subsequence of {ak}∞k=0 (we can denote it by ak
again), such that the eigenvalues λi,ak converge to some numbers λi ∈ (0,Λ), for
1 ≤ i ≤ R, as k →∞.

Proposition 5.1. The numbers {λi}Ri=1 are different.

Proof. From (3.4) we obtain, with fixed λ and x→ 0,

ψ(x, λ) = (ρ+ h(x))− 1
4 (γ(λ) cos ξ(x, ρ) + δ(λ) sin ξ(x, ρ)) + o(1). (5.1)

But since γ(λ) and δ(λ) are entire analytic functions, the integral

1∫

0

|ψ(x, λ)|2dx (5.2)

converges uniformly over any finite λ-interval, so it is continuous in [0,Λ]. This integral
cannot vanish for any λ, therefore it has a positive minimum in [0,Λ], say m′. Also,
by the uniform convergence, for any positive ε, we can find T = T (ε) such that

T∫

0

|ψ(x, λ)|2dx < ε (5.3)
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in [0,Λ]. But, since the eigenfunctions are orthogonal, for m 6= n,

1∫

ak

ψ(x, λm,ak)ψ(x, λn,ak)dx = 0 (5.4)

and if ak < T , Schwartz’s inequality and (5.3) give
∣∣∣∣∣∣

T∫

ak

ψ(x, λm,ak)ψ(x, λn,ak)dx

∣∣∣∣∣∣
< ε (5.5)

From (5.4) and (5.5), we have
∣∣∣∣∣∣

1∫

T

ψ(x, λm,ak)ψ(x, λn,ak)dx

∣∣∣∣∣∣
< ε (5.6)

for all ak < T . If it were λm = λn, then, as k →∞,

1∫

T

ψ(x, λm,ak)ψ(x, λn,ak)dx→
1∫

T

(ψ(x, λn))2dx ≥ m′ − ε

by (5.3). This contradicts (5.6), for sufficiently small ε.

To prove the next theorem, we need the following lemma, which was proved
in [9, Section 8].

Lemma 5.2. Let F (λ) be an analytic function, regular inside and on the boundary
of the square

k − r ≤ Reλ ≤ k + r,

−r ≤ Imλ ≤ r,
where k and r are positive, except perhaps for simple poles at the points λ = k ± r.
Suppose that

|F (λ)| ≤ M

| Imλ|
throughout the square, except for the line Imλ = 0. Then

|F (λ)| ≤ 3M
r

for λ with Reλ = k and −r ≤ Imλ ≤ r.
Theorem 5.3. The function m(λ) is regular for 0 < Reλ < Λ, except for simple
poles at the points λ = λr, r = 1, . . . , R.
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Proof. We know from Section 2, that on the circle Ca
1∫

a

|θ + lφ|2dx ≤ Im l

Imλ
≤
∣∣∣∣
l

Imλ

∣∣∣∣ .

On the other hand,

1
2 |l|

2
1∫

a

|φ|2dx−
1∫

a

|θ|2dx ≤
1∫

a

|θ + lφ|2dx,

and therefore

|l| ≤ 1

| Imλ|
1∫
a

|φ|2dx
+




2
1∫
a

|θ|2dx
1∫
a

|φ|2dx
+ 1

| Imλ|2
( 1∫
a

|φ|2dx
)2




1
2

.

If 0 < a < 1− ε, for fixed ε > 0 and | Imλ| is bounded, then we can find constants A
and B so that

|l(λ, a)| < A+ B

| Imλ| . (5.7)

Moreover, for a fixed K > 0, there exists a number C such that

|l(λ, a)| < C

| Imλ|

in D = {λ ∈ C : 0 ≤ Reλ ≤ Λ, | Imλ| ≤ K}.
From Section 2, we know that all singularities of l(λ, ak) in D are simple

poles at the points λr,ak , where r = 1, . . . , R. Let dk be the diameter of the set
{0, λ1,ak , . . . , λR,ak ,Λ}. We chose η, such that η < d

12 , where d = limk→+∞ dk. Without
lost of generality, we may assume that η < dk

12 , for all k ≥ 1. For ς ∈ C and ν > 0 we
denote by Qνς the square with sides parallel to the axes and of length ν, and center
at the point ς. Then applying lemma 5.2 to the function l(λ, ak) and each of the 2R
squares Q2η

λr,ak±η
, r = 1, . . . , R, we get that

|l(λ, ak)| < 3C
η
, (5.8)

for Reλ = λr,ak ± η and | Imλ| ≤ η. Then (5.8) holds in D\⋃Rr=1Q
2η
λr,ak

. But,
since λr,ak → λr as k → ∞, if k is large enough, the function l(λ, ak) is regular in
D\⋃Rr=1Q

2η
λr
, and thus (5.8) holds in D\⋃Rr=1Q

4η
λr,ak

. Therefore, by Vitali’s conver-
gence theorem ([20, (5.21)]), l(λ, ak) tends to m(λ) uniformly and

|m(λ)| ≤ 3C
η
,
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for η ≤ Reλ ≤ Λ − η and | Imλ| ≤ K − η, excluding ⋃Rr=1Q
6η
λr
. Since η and K are

arbitrary, it follows that m(λ) is regular for 0 < Reλ < Λ except perhaps for simple
poles at the points λ = λr, r = 1, . . . , R.

So, it remains to prove that λr are simple poles (we have already proved such
statements for the poles of the approximating regular problems, but now we need it for
the singular problem. Moreover, we must exclude the possibility that λr is a regular
point.) Let rn,a be the residue of the function l(λ, a) at the point λ = λn,a. Then

1∫

a

(φ(x, λn,a))2dx = 1
rn,a

(5.9)

As before, for ε > 0, there exists T = T (ε) such that

T∫

0

(φ(x, λ))2dx < ε

for λ ∈ [0,Λ]. Having fixed T , we can choose k so that ak < T and

1∫

T

|(φ(x, λn))2 − (φ(x, λn,ak))2|dx < ε.

Then
1∫

0

(φ(x, λn))2dx−
1∫

ak

(φ(x, λn,ak))2dx

≤
1∫

T

|(φ(x, λn))2 − (φ(x, λn,ak))2|dx+
T∫

0

(φ(x, λn))2dx+
T∫

ak

(φ(x, λn,ak))2dx < 3ε.

This implies, as k tends to infinity,
1∫

ak

(φ(x, λn,ak))2dx→
1∫

0

(φ(x, λn))2dx

or, equivalently,

lim
k→∞

rn,ak =




1∫

0

(φ(x, λn))2dx



−1

.

But the integral
1∫

0

(φ(x, λn))2dx <∞
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converges uniformly in λn ∈, and so has an upper bound, say, M ′ . Hence

lim
k→∞

rn,ak ≥
1
M ′

.

Let Γ be a simple, closed contour lying within the rectangle η ≤ Reλ ≤ Λ − η and
| Imλ| ≤ K − η, and surrounding the square Q6η

λn
, but not any other part of Q6η

λm
with

n 6= m. Then, as k tends to infinity,
∫

Γ

l(λ, ak)dλ→
∫

Γ

m(λ)dλ

uniformly. Hence ∫

Γ

m(λ)dλ = lim
k→∞

rn,ak ,

which is non-zero as shown above. It follows that the contour must include a singularity
of the function m(λ), which can only be a simple pole at the point λ = λn.

Now we prove the main theorem of this paper.

Theorem 5.4. Let h(x) = −q(x) be a twice-differentiable function on (0, 1] which
satisfies the following conditions:

(A) h(1) = 0;
(B) h′(x) is negative when x ∈ (0, 1);
(C) h′′(x) is ultimately of one sign;
(D) h′′(x) = O(|h′(x)|γ) where 1 < γ < 4

3 ;
(E) |h

′(x)|
h(x)d increases monotonically for some constant d < 3

2 ,

where (C), (D) and (E) apply as x tends to zero. Then

N(H, (0, λ)) =
√
λ

π
+O(1),

N(H, (−µ, 0)) = 1
π

1∫

p(µ)

(h(x)) 1
2 dx+

p(µ)∫

0

[(h(x)) 1
2 − (h(x)− µ) 1

2 ]dx+O(1),

where the remainder terms are bounded for all positive values of λ and µ.

Proof. By Theorem 5.3 we know that one can pass to the limit as a → 0 in the
eigenvalue estimates on the interval (a, 1). The latter estimates have been obtained in
Section 4. Therefore, for positive eigenvalues,

N(H, (0, λ)) = R+O(1),

here we have a possible error term, since we may miss the eigenvalues λ = 0 and
λ = Λ.
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But, by (4.23) we have

R = 1
π

1∫

0

[(λ+ h(x)) 1
2 − (h(x)) 1

2 ]dx+O(1).

Then

N(H, (0, λ)) = 1
π

1∫

0

[(λ+ h(x)) 1
2 − (h(x)) 1

2 ]dx+O(1)

=
√
λ

π

1∫

0

1
(

1 + h(x)
λ

) 1
2 +

(
h(x)
λ

) 1
2
dx+O(1).

Note that, the integrand is less than 1 and converges to 1 as λ tends to plus infinity.
Therefore, the first result follows by the dominated convergence theorem. The asymp-
totic formula for N(H, (−µ, 0)), follows from similar arguments.

Next corollary immediately follows from the asymptotic formula for the negative
spectrum.

Corollary 5.5. Let h(x) satisfy all conditions of Theorem 5.4. Then the number of
negative eigenvalues is finite if and only if

1∫

0

h(x) 1
2 dx < +∞.

Corollary 5.6. Let h(x) satisfies all condition of Theorem 5.4. Then

N(H, (−µ, 0)) = o(N(H, (0, µ))),

when µ tends to infinity.

Proof. It is enough to show that each summand in the asymptotic formula for the
negative spectrum is o(√µ):

1√
µ

p(µ)∫

0

[(h(x)) 1
2 − (h(x)− µ) 1

2 ]dx =
p(µ)∫

0

dx
(
h(x)
µ

) 1
2 +

(
h(x)
µ − 1

) 1
2
≤ p(µ)→ 0,

when µ→ +∞.

1√
µ

1∫

p(µ)

(h(x)) 1
2 dx ≤ 1√

µ




1∫

p(µ)

h(x)dx




1
2

(1− p(µ))
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=




1∫
p(µ)

h(x)dx

µ




1
2

=




−h(p)p−
1∫

p(µ)
xh′(x)dx

−
1∫

p(µ)
h′(x)dx




1
2

≤




1∫
p(µ)

xh′(x)dx

1∫
p(µ)

h′(x)dx




1
2

→ 0,

by L’Hopital’s rule, when p(µ)→ 0.

6. REMARKS AND EXAMPLES

The conditions of Theorem 5.4 can be relaxed. We do not give here the exact reasoning,
that might be rather lengthy, but just give some hints for the method of proving.

Remark 6.1. The condition (A), h(1) = 0 is not essential: the change q 7→ q − q(1)
switches the sign of a finite number of eigenvalues, this keeping the asymptotic formulas.

Remark 6.2. The condition (B) can be relaxed: it is sufficient to require that h′(x) < 0
for x sufficiently close to 0. Provided that h is bounded outside a neighborhood of 0,
one can change h by a bounded function so that after this change the new h would
satisfy (B). The fact that the asymptotic formulas hold follows from the relative
compactness of the perturbation of h.

Finally, we calculate the asymptotics of the negative eigenvalues for some interesting
examples.

Example 6.3. Let h(x) = x−α with α > 2. Then, from Theorem 5.4 we obtain

N(H, (−µ, 0)) = 1
π

1∫

µ−
1
α

x−
α
2 dx+ 1

π

µ−
1
α∫

0

(
x−

α
2 −

(
x−α − µ

) 1
2
)
dx+O(1)

= 2
π(α− 2)µ

1
2− 1

α + µ−
1
α

π

1∫

0

(
x−

α
2 µ

1
2 −

(
µx−α − µ

) 1
2
)
dx+O(1)

= µ
1
2− 1

α

π


 2
α− 2 +

1∫

0

(
x−

α
2 −

(
x−α − 1

) 1
2
)
dx


+O(1).
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Example 6.4. h(x) = e
k
x , with k > 0. To estimate N(H, (−µ, 0)), we estimate

integrals in asymptotic formula. On the one hand,
p∫

0

1
(h(x)) 1

2
=

p∫

0

e−
k

2x dx

= −
0∫

−p

2x2

k
de

k
2x = 2p2

k
e−

k
2p + 4

k

0∫

−p

e
k

2xxdx+O(1)

<
2p2

k
e−

k
2p + 4

k
p2e−

k
2p +O(1) = 6p2

k
e−

k
2p +O(1).

Then
3p2

k
e−

k
2p +O(1) ≤

p∫

0

1
(e kx ) 1

2 + (e kx − µ) 1
2
dx ≤ 6p2

k
e−

k
2p +O(1). (6.1)

On the other hand,
1∫

p

(h(x)) 1
2 =

1∫

p

e
k

2x dx = −
1∫

p

2x2

k
de

k
2x

= 2p2

k
e
k

2p + 4
k

1∫

p

xe
k

2x dx+O(1)

= 2p2

k
e
k

2p + p3

k
e
k

2p + 12
k2

1∫

p

x2e
k

2x dx+O(1),

and then

2p2

k
e
k

2p +O(1) ≤
1∫

p

e
k

2x dx ≤ 2p2

k
e
k

2p + p3

k
e
k

2p + 12p2

k2 e
k

2p +O(1) < Cp2e
k

2p +O(1)

for some constant C > 0. Combining with (6.1) and recalling relation k
p = lnµ, we

obtain
C1

√
µ

ln2 µ
+O(1) < N(H, (−µ, 0)) < C2

√
µ

ln2 µ
+O(1).

Example 6.5. Let h(x) = e
1
x2 . Similarly to the previous example, one can show

C1

√
µ

lnµ
√

lnµ
+O(1) < N(H, (−µ, 0)) < C2

√
µ

lnµ
√

lnµ
+O(1).
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