PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A two-step fall detection algorithm combining threshold-based method and convolutional neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Falls are one of the leading causes of disability and premature death among the elderly. Technical solutions designed to automatically detect a fall event may mitigate fall-related health consequences by immediate medical assistance. This paper presents a wearable device called TTXFD based on MPU6050 which can collect triaxial acceleration signals. We have also designed a two-step fall detection algorithm that fuses threshold-based method (TBM) and machine learning (ML). The TTXFD exploits the TBM stage with low computational complexity to pick out and transmit suspected fall data (triaxial acceleration data). The ML stage of the two-step algorithm is implemented on a server which encodes the data into an image and exploits a fall detection algorithm based on convolutional neural network to identify a fall on the basis of the image. The experimental results show that the proposed algorithm achieves high sensitivity (97.83%), specificity (96.64%) and accuracy (97.02%) on the open dataset. In conclusion, this paper proposes a reliable solution for fall detection, which combines the advantages of threshold-based method and machine learning technology to reduce power consumption and improve classification ability.
Rocznik
Strony
23--40
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Shenyang Aerospace University, School of Automation, Shenbei New District, Shenyang, China
autor
  • Shenyang Aerospace University, School of Automation, Shenbei New District, Shenyang, China
autor
  • Shenyang Aerospace University, School of Automation, Shenbei New District, Shenyang, China
Bibliografia
  • [1] Gibson, M. J. (1987). The prevention of falls in later life: a report of the Kellogg International Work Group on the prevention of falls by the elderly. Dan Med Bull, 34(4), 1-24.
  • [2] Lord, S. R., Sherrington, C., Menz, H. B., & Close, J. C. (2007). Falls in older people: Risk factors and strategies for prevention, U.K. Cambridge University Press.
  • [3] Todd, C., & Skelton D. (2004). What are the main risk factors for falls amongst older people and what are the most effective interventions to prevent these falls? World Health Organization.
  • [4] Tinetti, M. E., Liu, W. L., & Claus, E. B. (1993). Predictors and prognosis of inability to get up after falls among elderly persons. JAMA - Journal of the American Medical Association, 269(1), 65-70. https://doi.org/10.1001/jama.1993.03500010075035
  • [5] Wójtowicz, B., Dobrowolski, A., & Tomczykiewicz, K. (2015). Fall detector using discrete wavelet decomposition and SVM classifier. Metrology and Measurement Systems, 22(2), 303-314. https://doi.org/10.1515/mms-2015-0026
  • [6] Muheidat, F., Tawalbeh, L., & Tyrer, H. (2018). Context-aware, accurate, and real time fall detection system for elderly people. Proceedings of 2018 IEEE 12th International Conference on Semantic Computing (ICSC), Canada, 329-333. https://doi.org/10.1109/ICSC.2018.00068
  • [7] Chaccour, K., Darazi, R., Hassans, A. H. E., & Andres, E. (2015). Smart carpet using differentia piezoresistive pressure sensors for elderly fall detection. Proceedings of 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications, United Arab Emirates, 225-229. https://doi.org/10.1109/WiMOB.2015.7347965
  • [8] Sixsmith, A., Johnson, N., & Whatmore, R. W. (2005). Pyroelectric IR sensor arrays for fall detection in the older population. Journal de Physique IV France, 128, 153-160. https://doi.org/10.1051/jp4:2005128024
  • [9] Nishiguchi, S., Yamada, M., Uemura, K., Matsumura, T., & Aoyama, T. (2013). A novel in-frared laser device that measures multilateral parameters of stepping performance for assessment of fall risk in elderly individuals. Aging Clinical and Experimental Research, 25(4), 311-316. https://doi.org/10.1007/s40520-013-0042-9
  • [10] Zhao, F., Cao, Z., Xiao, Y., Mao, J., & Yuan, J. (2019). Real-time detection of fall from bed using a single depth camera. IEEE Transactions on Automation Science & Engineering, 16(3), 1018-1032. https://doi.org/10.1109/TASE.2018.2861382
  • [11] Gasparrini, S., Cippitelli, E., Spinsante, S., & Gambi, E. (2014). A depth-based fall detection system using a kinect sensor. Sensors, 12(4), 2756-2775. https://doi.org/10.3390/s140202756
  • [12] Delahoz, Y. S., & Labrador, M. A. (2014). Survey on fall detection and fall prevention using wearable and external sensors. Sensors, 14(10), 19806-19842. https://doi.org/10.3390/s141019806
  • [13] Ren, L., & Peng, Y. (2019). Research of fall detection and fall prevention technologies: A systematic review. IEEE Access, 7, 77702-77722. https://doi.org/10.1109/ACCESS.2019.2922708
  • [14] Pannurat, N., Thiemjarus, S., & Nantajeewarawat, E. (2014). Automatic fall monitoring: A review. Sensors, 14(7), 12900-12936. https://doi.org/10.3390/s140712900
  • [15] Wang, C., Lu, W., Narayanan, M. R., Chang, D. W., Lord, S. R., Redmond, S. J., & Lovell, N. H. (2016). Low-power fall detector using triaxial accelerometry and barometric pressure sensing. IEEE Transactions on Industrial Informatics, 12(6), 2302-2311. https://doi.org/10.1109/TII.2016.2587761
  • [16] Aziz, O., Musngi, M., Park, E. J., Mori, G., & Robinovitch, S. N. (2017). A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Medical & Biological Engineering & Computing, 55(1), 45-55. https://doi.org/10.1007/s11517-016-1504-y
  • [17] Delgado-Escano, R., Castro, F. M., Cózar, J. R., Marín-Jiménez M. J., & Casilari, E. (2020). A cross-dataset deep learning-based classifier for people fall detection and identification. Computer Methods and Programs in Biomedicine, 184, 105265. https://doi.org/10.1016/j.cmpb.2019.105265
  • [18] Shahzad, A., & Kim, K. (2019). Falldroid: An automated smart-phone-based fall detection system using multiple kernel learning. IEEE Transactions on Industrial Informatics, 15(1), 35-44. https://doi.org/10.1109/TII.2018.2839749
  • [19] Yuan, J., Tan, K. K., Lee, T. H., & Koh, G. C. H. (2015). Power-efficient interrupt-driven algorithms for fall detection and classification of activities of daily living. IEEE Sensors Journal, 15(3), 1377-1387. https://doi.org/10.1109/JSEN.2014.2357035
  • [20] Montanini, L., Campo, A. D., Perla, D., Spinsante, S., & Gambi, E. (2018). A footwear-based methodology for fall detection. IEEE Sensors Journal, 18(3), 1233-1242. https://doi.org/10.1109/JSEN.2017.2778742
  • [21] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  • [22] Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. Proceedings of Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, USA, 40-46.
  • [23] Lecun, Y., & Bottou, L. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • [24] Micucci, D., Mobilio, M., & Napoletano, P. (2017). UNIMIB SHAR: A new dataset for human activity recognition using acceleration data from smartphones. Applied Sciences, 7(10), 1101. https://doi.org/10.3390/app7101101
  • [25] Vavoulas, G., Chatzaki, C., Malliotakis, T., Pediaditis, M., & Tsiknakis, M. (2016). The MobiAct dataset: Recognition of activities of daily living using smartphones. Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health, Italy, 143-151. https://doi.org/10.5220/0005792401430151
  • [26] Asrul, A., Ibrahim, S. M., Zaidi, M. T. M., Saberi, M. M., & Marizan, M. (2014). Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization. The Scientific World Journal, 2014, 973063. https://doi.org/10.1155/2014/973063
  • [27] Kerdegari, H., Mokaram, S., Samsudin, K., & Ramli, A. R. (2015). A pervasive neural network based fall detection system on smart phone. Journal of Ambient Intelligence & Smart Environments, 7(2), 221-230. https://doi.org/10.3233/AIS-150306
  • [28] Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J., & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. Proceedings of 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, United States, 138-143. https://doi.org/10.1109/BSN.2009.46
  • [29] He, J., Zhang, Z., Wang, X., & Yang, S. (2019). A low power fall sensing technology based on FD-CNN. IEEE Sensors Journal, 19(13), 5110-5118. https://doi.org/10.1109/JSEN.2019.2903482
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a65b1e3-3aa9-4070-a02f-403c7ed0efb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.