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Two Fourier relations of light waves scattered by a random-distributed particulate medium have
been investigated. We find that the scattered field and the particulate collection satisfy two Fourier
relations, i.e. the spectral density is directly proportional to a Fourier transform of a convolution
of correlation coefficient of each particle and correlation coefficient of distribution function of the
whole collection, and the spectral degree of coherence is directly proportional to a Fourier trans-
form of a convolution of strength of the scattering potential of each particle and strength of the
distribution function of the whole collection. To illustrate these relations, behaviors of the far-field
generated by Gaussian-correlated particles with Gaussian-correlated distributions have been dis-
cussed. 
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1. Introduction

As one of important methods to determine the structural information of an unknown
object, the weak scattering theory is always a topic that has attracted much attention. To
properly describe the characteristic of the scattering medium, a lot of models of scat-
tering media were constructed, for example, the quasi-homogeneous medium [1–6],
the anisotropic medium [7–9], the semisoft boundary medium [10–13], and the particu-
late medium [14–19]. It has been shown that there is some important structural infor-
mation which can be obtained by measuring scattered field [20]. This phenomenon may
provide a way to determine structural characteristic of an unknown object from the
measurement of scattered field (see, for examples, [21–27]).

When we discuss light scattering, a model of quasi-homogeneous medium is usually
considered. It is well-known that there are special Fourier relations between distribu-
tion of scattered field and characteristic of the medium, which is known as reciprocity
relations [28]. These relations attracted much attention because they could provide
available ways to measure structural information of scatterer. For example, XINYUE DU

and DAOMU ZHAO discussed the reciprocity relations of an anisotropic medium [29], and
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JIMING YU and JIA LI discussed the reciprocity relations of two incident beams which
are generated by Young’s pinhole [30]. Recently, the scattering behaviors of light wave
from a particulate medium were discussed extensively. For example, the spectral degree
of coherence of light wave on scattering from a particulate medium was discussed, and
the particle-related coherence changes and the distribution-related coherence changes
were investigated [31]; the scattering behavior of light wave from a mixed collection
composed by different types was discussed, and it is shown that both the distribution
characteristic of random-distributed particles and the location of determinate-distrib-
uted particles play a role in the behaviors of the far-zone scattered field [32]. In this
manuscript, based on the random-distributed identical particles collection, the reciproc-
ity relations between the scattered field and the particulate collection will be studied. To
illustration this relations, an example to illustrate behaviors of light waves scattered from
Gaussian-correlated particles with Gaussian-correlated distributions will be discussed. 

2. Theory

As shown in Fig. 1, assume that a spatially coherent plane light wave, propagating in
a direction of s0, is incident on a collection of particles. To analyze the statistical prop-
erties of incident field, we employ the cross-spectral density function located in two
position vectors  and  which is defined as [33]

(1)

where * denotes complex conjugate, and  denotes the ensemble average, with U (i)

being the incident field, i.e.

(2)

where a(ω) is a random amplitude, and k = ω/c is wave number.
Assume that the scattering medium is random-distributed random particles, i.e. the

scattering potential of each particle is a random function and the location of each par-
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Fig. 1. Illustration of the notations. 
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ticle in the collection is also a random function. In the situation, characteristics of col-
lection should be described by its correlation function, i.e. [24]

(3)

where 

(4)

denotes scattering potential of collection with  being the location vectors of the par-
ticles, and n denotes the sum of particles [19].

If the refractive index only slightly differs from unity, the magnitude of the scat-
tered field may be smaller enough than the incident one. In this case, the scattering
process could be analyzed within the first-order Born approximation [34]. Assume that
the ensemble averages of that over the Fourier transform of particle’s scattering po-
tential and of that over the Fourier transform of the distribution function are independent.
Then the far-zone cross-spectral density function at two location vectors rs1 and rs2
can be expressed as [31]

(5)

where S (i )(ω) is the spectrum of the incident field, and 

(6)

and

(7)

are two spatially Fourier transforms of Cf  and Cn, respectively, with

(8)

and

(9)

When the two unit vectors of scattering directions are the same (i.e., s1 = s2 = s), the
spectral density in the far field can be given by the expression 

CF r'1 r'2 ω, ,( ) F * r'1 ω,( ) F r'2 ω,( ) =

F r' ω,( ) f r' r'n– ω,( )
n
=

r'n

W s( ) rs1 rs2 s0 ω, , ,( ) S i( ) ω( )
r 2

----------------------C̃f k s1 s0–( )– k s2 s0–( ) ω, , 
 

C̃n k s1 s0–( )– k s2 s0–( ) ω, , 
 ×

=

C̃f K1 K2 ω, ,( ) Cf r'1 r'2 ω, ,( ) i K1 r'1⋅ K2 r'2⋅+( )– d3r'1 d3r'2exp
D
=

C̃n K1 K2 ω, ,( ) Cn r'1 r'2 ω, ,( ) i K1 r'1⋅ K2 r'2⋅+( )– d3r'1 d3r'2exp
D
=

Cf r'1 r'2 ω, ,( ) f * r'1 ω,( ) f r'2 ω,( ) =

Cn r'1 r'2 ω, ,( ) δ* r'1 r'm– ω,( )δ r'2 r'n– ω,( )
n


m
 =



664 ZHENFEI JIANG et al.
(10)

On the other hand, the spectral degree of coherence in the far field is defined as

(11)

Then on employing Eqs. (5) and (10), the spectral degree of coherence defined by
Eq. (11) can be rewritten as

(12)

In the following discussion, we will discuss Fourier relations between distributions
of scattered field and properties of particulate collection. Hypothesize that all of par-
ticles in the collection are quasi-homogeneous, i.e., its strength of the scattering po-
tential Sf (r) is a “slow” function of r, whereas the normalized correlation coefficient
of the scattering potential μf (r' ) is a “fast” function of r'  with r'  = r2 – r1 [28]. In this
case, the correlation of scattering potential of the collection has a form [31]

(13)

where Sf  and μf  denote strength and normalized correlation coefficient of scattering
potential of a particle, respectively. Moreover, assume that distribution functions of
particles in the collection are also quasi-homogeneous, i.e.

(14)

where Sn  and μn  denote strength and normalized correlation coefficient of distribution
function, respectively.

S s( ) rs s0 ω, ,( ) S i( ) ω( )
r 2

----------------------C̃f k s s0–( )– k s s0–( ) ω, , 
  C̃n k s s0–( )– k s s0–( ) ω, , 

 =

μ s( ) rs1 rs2 s0 ω, , ,( )
W s( ) rs1 rs2 s0 ω, , ,( )

S s( ) rs1 s0 ω, ,( ) S s( ) rs2 s0 ω, ,( )
--------------------------------------------------------------------------------------------=

μ s( ) rs1 rs2 s0 ω, , ,( )

C̃f k s1 s0–( )– k s2 s0–( ) ω, , 
 

C̃f k s1 s0–( )– k s1 s0–( ) ω, , 
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 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
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 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------×

=

Cf r'1 r'2 ω, ,( ) Sf

r'1 r'2+

2
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 
 
 

μf r'2 r'1– ω,( )=

Cn r'1 r'2 ω, ,( ) Sn
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2
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 
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Substituting Eq. (13) into Eq. (6), after manipulating integration, one obtains that

(15)

where

(16)

and

(17)

denote the Fourier transform of Sf  and μf , respectively. Similarly, substituting Eq. (14)
into Eq. (7), the Fourier transform of distribution function is given as

(18)

where  and  denote the Fourier transform of Sn  and μn, respectively. Substituting
Eqs. (15) and (18) into Eq. (10), one gets the spectral density in the far field as

(19)

Next, on employing Eqs. (15) and (18), and after the rearrangement, the spectral
degree of coherence given by Eq. (12) can be rewritten as 

(20)

For a quasi-homogeneous medium,  should be a slow function of ks. In this case,
one can obtain the approximation relation [33], i.e.

(21)

C̃f K1 K2 ω, ,( ) S̃f K1 K2+ ω,( ) μ̃f

K2 K1–

2
------------------------ ω,
 
 
 
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3
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D
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μ̃f K ' ω,( ) μ f r' ω,( ) i K' r'⋅–( )d
3
r'exp

D
=
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2
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By employing the approximation relationship given by Eq. (21), the spectral degree
of coherence can be obtained, i.e.

(22)

Next, let us investigate the relations between the scattered field and the collection
of particles. After some rearrangements, one finds spectral density denoted by Eq. (19)
and spectral degree of coherence denoted by Eq. (22) can be presented as

(23)

and 

(24)

where  is the Fourier transform of μ, with

(25)

and  is the Fourier transform of S, with

(26)

where  represents the convolution. Based on Eqs. (23) and (24), when light waves
are scattered from a particulate collection, two new reciprocity relations can be found,
which may be expressed as:

1) Spectral density produced by light waves incident on random-distributed ran-
dom particles is directly proportional to the Fourier transform of a convolution of cor-
relation coefficient of each particle and correlation coefficient of distribution function
of whole collection; 

2) Spectral degree of coherence produced by light waves incident on random-dis-
tributed random particles is directly proportional to the Fourier transform of a convo-
lution of strength of scattering potential of each particle and strength of distribution
function of whole collection.

3. Numerical results

As an example, let us further suppose that strength function and correlation coefficient,
i.e. Eqs. (13) and (14), are Gaussian-centered [31], i.e.

μ s( ) r s1 r s2 s0 ω, , ,( )
S̃ f k s2 s1–( ) ω, 
 

S̃ f 0 ω,( )
-----------------------------------------------
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-----------------------------------------------=

S s( ) rs s0 ω, ,( ) S i( ) ω( )
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----------------------S̃ 0 ω,( ) μ̃ k s s0–( ) ω, 
 =

μ s( ) r s1 r s2 s0 ω, , ,( ) 1

S̃ 0 ω,( )
---------------------- S̃ k s2 s1–( ) ω, 

 =

μ̃

μ r'2 r'1– ω,( ) μf r'2 r'1– ω,( ) μn r'2 r'1– ω,( )⊗=

S̃

S
r1 r2+

2
-------------------- ω,
 
 
 
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r1 r2+

2
-------------------- ω,
 
 
 

Sn

r1 r2+

2
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 
 
 

⊗=

⊗
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(27a)

(27b)

and

(28a)

(28b)

where σSf
 and σμf

 are effective width and effective correlation width of scattering potential
of each particle, respectively, and σSn

 and σμn
 are effective width and effective corre-

lation width of distribution function, respectively. Substituting Eqs. (27) and (28) first
into Eqs. (25) and (26), and then into Eqs. (23) and (24), after manipulating the Fourier
transform, one finds the far-zone spectral density and far-zone spectral degree of co-
herence as

(29)

(30)

In what follows, some necessarily numerical results relating to scattered spectral
density and scattered spectral degree of coherence will be presented to further illustrate
the reciprocity relations. Figure 2 presents the normalized spectral density vs. the scat-
tering angle θ. It should be noted that the scattering angle is the angle between the in-
cident direction s0 and the scattering direction s. Figure 2a plots spectral density with
three different effective correlation widths of distribution functions, and Fig. 2b plots
spectral density with three different effective correlation widths of scattering potential
of particles. It is shown from Fig. 2 that both effective correlation width of scattering
potential of particles and effective correlation width of distribution function of collec-
tion may affect the distribution of the far field. Figure 3 presents the degree of the
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 
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 
 
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 
 
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 
 
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3
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2 σμn
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2
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coherence in the far field. Figures 3a and 3b plot spectral degree of coherence with
different effective widths of distribution functions and that with three different effec-
tive widths of scattering potentials of particles, respectively. It is shown from Figs. 3a
and 3b that the spectral degree of coherence is affected by effective width of scattering
potential of particles and by effective width of distribution function of collection.

4. Conclusions

In conclusion, new reciprocity relations relating to light waves incident on random-dis-
tributed random particles were discussed. We show that the spectral density in the far

1.0

0.8

0.6

0.4

0.2

0.0

0.00 0.01 0.02 0.03 0.04 0.05 0.000 0.005 0.010 0.015 0.020

N
or

m
al

iz
ed

 s
pe

ct
ra

l d
en

si
ty

θ θ

σμn1
 = 15λ

σμn2
 = 30λ

σμn3
 = 50λ

σμf
 = 3λ a b

σμf1
 = 8λ

σμf2
 = 15λ

σμf3
 = 20λ

σμn = 25λ

Fig. 2. Normalized spectral density generated by light waves scattered from three different collections
with three different effective correlation widths of distribution functions (a) and three different effective
correlation widths of scattering potentials of particles (b). 

1.0

0.8

0.6

0.4

0.2

0.0

0.000 0.005 0.001 0.0015 0.020 0.000 0.005 0.010 0.015 0.020

Sp
ec

tra
l d

eg
re

e 
of

 c
oh

er
en

ce

θ θ

σSn1
 = 20λ

σSn2
 = 50λ

σSn3
 = 100λ

σSf
 = 5λ a b

σSf1
 = 5λ

σSf2
 = 10λ

σSf3
 = 20λ

σSn = 25λ

Fig. 3. Spectral degree of coherence generated by light waves scattered from three different collections
with three different effective widths of distribution functions (a) and three different effective widths of
scattering potentials of particles (b). 



Reciprocity relations for light wave... 669
field is affected by correlation coefficient of scattering potential of each particle and
correlation coefficient of particle’s distribution function, while the spectral degree of
coherence in the far field is affected by strength of scattering potential of particles and
strength of particle’s distribution function. These results may provide a simple way to
determine the structural characteristics of a particulate medium from the measurements
of the scattered field. Specifically, one can determine the density information of the
scattering potentials of a particulate medium from the measurement of the spectral
degree of coherence of the scattered field, and one can determine the correlation in-
formation of the scattering potentials of a particulate medium from the measurement
of the spectral density of the scattered field.
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