PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective is to accelerate the mathematical modeling of complex systems and offer the researchers an accessible and standardized platform for model sharing and reusing. Methods: We describe a methodology for creating mathematical lumped models, decomposing a system into basic components represented by elementary physical laws and relationships expressed as equations. Our approach is based on Modelica, an object-oriented, equation-based, visual, non-proprietary modeling language, together with Physiolibrary, an open-source library for the domain of physiology. Results: We demonstrate this methodology on an open implementation of a range of simple to complex cardiovascular models, with great complexity variance (simulation time from several seconds to hours). The parts of different complexity could be combined together. Conclusions: Thanks to the equation-based nature of Modelica, a hierarchy of subsystems can be built with an appropriate connecting component. Such a structural model follows the concept of the system rather than the computational order. Such a model representation retains structural knowledge, which is important for e.g., model maintainability and reusability of the components and multidisciplinary cooperation with domain experts not familiar with modeling methods.
Twórcy
autor
  • Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic
autor
  • The Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
autor
  • Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
autor
  • The Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
Bibliografia
  • [1] Kalecký K. Relationship of heart's pumping function and pressure-flow patterns in reduced arterial tree. Czech Technical University; 2015.
  • [2] Cellier FE, Nebot A. Object-oriented modeling in the service of medicine. Proc. 6th Asia simulation conference. 2005. pp. 33–40.
  • [3] Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev Physiol 1972;34:13–46.
  • [4] Kofránek J, Rusz J. Restoration of Guyton's diagram for regulation of the circulation as a basis for quantitative physiological model development. Physiol Res 2010.
  • [5] Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, et al. HumMod: a modeling environment for the simulation of integrative human physiology. Front Physiol 2011;2:12.
  • [6] Hucka M, Finney A, Bornstein BJ, Keating SM, Shapiro BE, Matthews J, et al. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst Biol 2004;1:41–53.
  • [7] Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF. The CellML model repository. Bioinformatics 2008;24:2122–3.
  • [8] Raymond GM, Butterworth E, Bassingthwaighte JB. JSIM: free software package for teaching physiological modeling and research. FASEB J 2003;17:A390.
  • [9] Fontecave-Jallon J, Thomas SR. Implementation of a model of bodily fluids regulation. Acta Biotheor 2015;63:269–82.
  • [10] Brunberg A, Spillner J, Autschbach R, Abel D. Simulation physiologischer Regelkreise mit der objektorientierten Modellbibliothek ‘‘HumanLib’’. Automatisierungstechnik 2011;59:649–55.
  • [11] de Canete JF, Luque J, Barbancho J, Munoz V. Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: an object-oriented approach. Comput Biol Med 2014;47:104–12.
  • [12] Kulhánek T, Kofránek J, Mateják M. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach. Comput Biol Med 2014;54:137–44.
  • [13] Mateják M, Kofránek J. Physiomodel – an integrative physiology in Modelica. 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015. pp. 1464–7.
  • [14] Kretschmer J, Wahl A, Möller K. Dynamically generated models for medical decision support systems. Comput Biol Med 2011;41:899–907.
  • [15] Kofránek J, Mateják M, Privitzer P, Tribula M. Causal or acausal modeling: labour for humans or labour for machines. Tech Comput Prague 2008;1–16.
  • [16] de Canete JF, del Saz-Orozco P, Moreno-Boza D, Duran- Venegas E. Object-oriented modeling and simulation of the closed loop cardiovascular system by using SIMSCAPE. Comput Biol Med 2013;43:323–33.
  • [17] Fritzson P. Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical approach. John Wiley & Sons; 2015.
  • [18] Petzold LR, et al. A description of DASSL: a differential/ algebraic system solver. Proc. IMACS world congress. 1982. pp. 430–2.
  • [19] Mateják M, Kulhánek T, Šilar J, Privitzer P, Ježek F, Kofránek J. Physiolibrary – Modelica library for physiology. 10th International Modelica conference; 2014.
  • [20] Smith BW, Chase JG, Nokes RI, Shaw GM, Wake G. Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med Eng Phys 2004;26:131–9.
  • [21] Hernández AI, Le Rolle V, Ojeda D, Baconnier P, Fontecave- Jallon J, Guillaud F, et al. Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation. Prog Biophys Mol Biol 2011;107:169–82.
  • [22] Burkhoff D, Tyberg JV. Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis. Am J Physiol 1993;265:H1819–28.
  • [23] van Meurs W. Modeling and simulation in biomedical engineering: applications in cardiorespiratory physiology. 1st ed. McGraw-Hill Education; 2011.
  • [24] Mitamura Y. Control aspects of the circulatory system. IFAC control aspects of biomedical engineering; 1987.
  • [25] Lumens J, Delhaas T, Kirn B, Arts T. Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann Biomed Eng 2009;37:2234–55.
  • [26] Bovendeerd PHM, Borsje P, Arts T, van De Vosse FN. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann Biomed Eng 2006;34:1833–45.
  • [27] Mynard JP, Davidson MR, Penny DJ, Smolich JJ. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int J Numer Methods Biomed Eng 2012;28:626–41.
  • [28] Department of Biomedical Engineering, Maastricht University. Downloads – CircAdapt | learning cardiovascular physiology. CircAdapt: Advanced Cardiovascular Modeling and Simulation 2013. http://www.circadapt.org/downloads [accessed 25.02.16].
  • [29] Avolio AP. Multi-branched model of the human arterial system. Med Biol Eng Comput 1980;18:709–18.
  • [30] Shi Y, Lawford P, Hose R. Review of Zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng 2011;10:1–38.
  • [31] Schampaert S, Rutten MCM, van T Veer M, van Nunen LX, Tonino PAL, Pijls NHJ, et al. Modeling the interaction between the intra-aortic balloon pump and the cardiovascular system: the effect of timing. ASAIO J 2013;59:30–6.
  • [32] Itoh H, Ichiba S, Ujike Y, Douguchi T, Obata H, Inamori S, et al. Effect of the pulsatile extracorporeal membrane oxygenation on hemodynamic energy and systemic microcirculation in a piglet model of acute cardiac failure. Artif Organs 2016;40:19–26.
  • [33] Heldt T, Mukkamala R, Moody GB, Mark RG. CVSim: an open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol Ther J 2010;3:45–54.
  • [34] Ntaganda JM, Mampassi B. CARDIOGUI: an interface guide to simulate cardiovascular respiratory system during physical activity. AM 2012;03:2000–6.
  • [35] PVLoops LLC n.d. http://www.pvloops.com/ [accessed 22.08.16].
  • [36] Zhang S. An IIOP architecture for Web-enabled physiological models. Massachusetts Institute of Technology; 2001.
  • [37] Fresiello L, Ferrari G, Di Molfetta A, Zieliński K, Tzallas A, Jacobs S, et al. A cardiovascular simulator tailored for training and clinical uses. J Biomed Inform 2015;57:100–12.
  • [38] Modelica Association. Tools | Functional Mock-up Interface; 2017, http://fmi-standard.org/tools/ [accessed 21.07.17].
  • [39] Gesenhues J, Hein M, Ketelhut M, Habigt M, Rüschen D, Mechelinck M, et al. Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology. Biomed Tech 2017;62:111–21.
  • [40] Ježek F. Physiolibrary models. GitHub n.d. https://github.com/filip-jezek/Physiolibrary.models [accessed 20.07.17].
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a5ac101-449d-4e3d-96d7-cf8f6ded701b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.