PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the stability of a Cauchy type functional equation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the Hyers-Ulam type stability and the hyperstability of the functional equation [wzór] are proved.
Wydawca
Rocznik
Strony
323--331
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
autor
  • Department of Mathematics, Daejin University, Kyunggi 11159, Republic of Korea
autor
  • Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
  • Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
Bibliografia
  • [1] Ulam S. M., Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940
  • [2] Hyers D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 1941, 27(4), 222–224
  • [3] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2(1-2), 64–66
  • [4] Rassias Th. M., On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 1978, 72, 297–300
  • [5] Brzdek J., Fechner W., Moslehian M. S., Sikorska J., Recent developments of the conditional stability of the homomorphismequation, Banach J. Math. Anal., 2015, 9(3), 278–326
  • [6] Brzdek J., Popa D., Rasa I., Xu B., Ulam Stability of Operators, Mathematical Analysis and its Applications, v. 1, Academic Press, Elsevier, Oxford, 2018
  • [7] Czerwik S., Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002
  • [8] Gordji M. E., Najati A., Approximately J*-homomorphisms: a fixed point approach, J. Geom. Phys., 2010, 60, 809–814
  • [9] Forti G. L., Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 1995, 50(1-2), 143–190
  • [10] Hyers D. H., Isac G., Rassias Th. M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998
  • [11] Jung S., Hyers-Ulam-Rassias stability of functional equations in non linear analysis, Springer Optimization and its Applications, 48, Springer, New York, 2011
  • [12] Najati A., Homomorphisms in quasi-Banach algebras associated with a pexiderized Cauchy-Jensen functional equation, Acta Math. Sin. (Engl. Ser.), 2009, 25(9), 1529–1542
  • [13] Najati A., Park C., On the stability of an n-dimensional functional equation originating from quadratic forms, Taiwanese J. Math., 2008, 12(7), 1609–1624
  • [14] Najati A., Rassias Th. M., Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Anal.–TMA, 2010, 72(3-4), 1755–1767
  • [15] Rassias Th. M., On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 2000, 62(1), 23–130
  • [16] Kannappan Pl., Sahoo P. K., Cauchy difference – a generalization of Hosszú functional equation, Proc. Nat. Acad. Sci. India,1993, 63(3), 541–550
  • [17] Gajda Z., On stability of additive mappings, Int. J. Math. Sci., 1991, 14(3), 431-434
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a5a6e40-d14f-49be-b596-63362bbee89a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.