Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
To overcome the depth-of-field limitation of an optical microscope image, a three-dimensional measurement method with a superior depth-of-field is proposed. In the proposed method, light-field information of different angles is obtained by moving the aperture and the three-dimensional scene is reconstructed by using a computational reconstruction technology. First, stereo matching of different aperture position images is performed to obtain the multi-aperture imaging deviation. The focal plane moving distance is thereby estimated. Then, the relational expression between the image coordinates and the focal plane moving distance is determined according to the image coordinates. Two dimensional coordinates of the space point are obtained by the expression coefficients. Finally, the depth coordinates are computed, and three-dimensional reconstruction of the spatial points is completed. Experiments of three-dimensional measurements of the calibration board with different angles and circuit boards are conducted. The results show that the maximum error of the distance measurement is controlled into 0.84%, and the maximum angle measurement error is controlled into 4.56%.
Czasopismo
Rocznik
Tom
Strony
533--547
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
- School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
autor
- Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
autor
- Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
autor
- School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
autor
- Ningbo Power Supply Company, State Grid Zhejiang Electric Power Corporation, Ningbo 315600, China
autor
- Ningbo Power Supply Company, State Grid Zhejiang Electric Power Corporation, Ningbo 315600, China
Bibliografia
- [1] EN BO, LINBO LIU, Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis, Proceedings of SPIE 10024, 2016, article ID 1002451.
- [2] YAWEI WANG, LI ZHANG, YING JI, YUANYUAN XU, MIN BU, YINGZHOU CHEN, 3D morphological reconstruction of the red blood cell based on two phase images, Optica Applicata 45(2), 2015, pp. 173–182.
- [3] XIAOQING XU, YAWEI WANG, YUANYUAN XU, WEIFENG JIN, Simultaneous measurement of refractive index and thickness for optically transparent object with a dual-wavelength quantitative technique, Optica Applicata 46(4), 2016, pp. 597–605.
- [4] AMBIKUMAR A.S., BAILEY D.G., SEN GUPTA G., Extending the depth of field in microscopy: a review, Proceedings of the 2016 International Conference on Image and Vision Computing New Zealand. November 21–22, 2016, Palmerston North, New Zealand, IEEE, pp. 185–190.
- [5] KI-CHUL KWON, ERDENEBAT M.-U., ALAM M.A., YOUNG-TAE LIM, KWANG GI KIM, NAM KIM, Integral imaging microscopy with enhanced depth-of-field using a spatial multiplexing, Optics Express 24(3), 2016, pp. 2072–2083.
- [6] SHAIN W.J., VICKERS N.A., GOLDBERG B.B., BIFANO T., MERTZ J., Extended depth-of-field microscopy with a high-speed deformable mirror, Optics Letters 42(5), 2017, pp. 995–998.
- [7] PÉGARD N.C., HSIOU-YUAN LIU, ANTIPA N., GERLOCK M., ADESNIK H., WALLER L., Compressive light-field microscopy for 3D neural activity recording, Optica 3(5), 2016, pp. 517–524.
- [8] LEVOY M., REN NG, ADAMS A., FOOTER M., HOROWITZ M., Light field microscopy, ACM Transactions on Graphics 25(3), 2006, pp. 924–934.
- [9] JONGHYUN KIM, YOUNGMO JEONG, HYUNGJIN KIM, CHANG-KUN LEE, BYEONGMOON LEE, JISOO HONG, YOUNGMIN KIM, YONGTAEK HONG, SIN-DOO LEE, BYOUNGHO LEE, F-number matching method in light field microscopy using an elastic micro lens array, Optics Letters 41(12), 2016, pp. 2751–2754.
- [10] KALANTARI N.K., WANG T.-C., RAMAMOORTHI R., Learning-based view synthesis for light field cameras, ACM Transactions on Graphics 35(6), 2016, article ID 193.
- [11] WETZSTEIN G., HEIDRICH W., RASKAR R., Computational Schlieren photography with light field probes, International Journal of Computer Vision 110(2), 2014, pp. 113–127.
- [12] TIAN L., WALLER L., Quantitative differential phase contrast imaging in an LED array microscope, Optics Express 23(9), 2015, pp. 11394–11403.
- [13] GUOAN ZHENG, HORSTMEYER R., CHANGHUEI YANG, Wide-field, high-resolution Fourier ptychographic microscopy, Nature Photonics 7(9), 2013, pp. 739–745.
- [14] DUSSELDORP J.K., STAMATAKIS H.C., REN Y., Soft tissue coverage on the segmentation accuracy of the 3D surface-rendered model from cone-beam CT, Clinical Oral Investigations 21(3), 2017, pp. 921–930.
- [15] WEISS M., BARET F., Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure, Remote Sensing 9(2), 2017, p. 111.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a595194-f630-49bd-b2a7-4d43a5fc6531