PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Friction stir processing – State of the art

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing demands for operating properties of fabricated elements on one hand, and a necessity of reducing mass of a structure on the other, triggers materials engineering research into producing surface layers representing required functional properties. Methods commonly used in the production of surface layers, such as surfacing, spraying or re-melting with a laser beam have been known for years. A new method is the friction stir processing (FSP) of surface layers. The FSP process is primarily used for the modification of microstructure in near-surface layers of processed metallic components. In particular, the process may produce: fine grained structure, surface composite, microstructural modification of cast alloys, alloying with specific elements, improvement of welded joints quality. The chapter is composed of a few main parts. In the first part, based on literature review the main application and achievements of FSP processes are presented. In the second part: analysis of the process. The third part is focused on microstructure refinement and the last part provide information about friction stir alloying as well as friction stir processing with ultrasonic vibration.
Rocznik
Strony
114--129
Opis fizyczny
Bibliogr. 110 poz., rys., tab., wykr.
Twórcy
  • Instytut Spawalnictwa (Institute of Welding), Bl. Czeslawa Str. 16-18, Gliwice 44-100, Poland
Bibliografia
  • [1] W.M. Thomas, E.D. Nicholas, et al., GB Patent Application No. 9125978.8, 1991.
  • [2] R.S. Mishra, Friction stir welding and processing, Materials Science and Engineering Reports 50 (2005) 1–78.
  • [3] R.M. Miranda, J. Gandra, P. Vilaça, Surface modification by friction based processes, in: Modern Surface Engineering Treatments, InTech, 2013.
  • [4] Z.Y. Ma, S.R. Sharma, R.S. Mishra, Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum–silicon alloy, Scripta Materialia 54 (2006) 1623–1626.
  • [5] T.R. McNelley, Friction stir processing: refining microstructures and improving properties, Revista de Metalurgia 46 (2010) 149–156.
  • [6] Z.Y. Ma, Friction stir processing technology – a review, Metallurgical and Materials Transactions A 39 (2008) 642–658.
  • [7] M.K.B. Givi, P. Asadi, Advances in Friction Stir Welding and Processing, Woodhead Publishing, Amsterdam, 2014.
  • [8] N. Mendes, P. Neto, A. Loureiro, et al., Machines and control systems for friction stir welding: a review, Materials and Design 910 (2016) 256–265.
  • [9] C. Hamilton, M.St. Węglowski, S. Dymek, P. Sedek, Using a coupled thermal/material flow model to predict residual stress in friction stir processed AlMg9Si, Journal of Materials Engineering and Performance 24 (2015) 1305–1312.
  • [10] M.St. Węglowski, Friction stir processing technology – new opportunities, Welding International 28 (2014) 583–592.
  • [11] D.G. Hattingha, C. Blignaulta, et al., Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool, Journal of Materials Processing Technology 203 (2008) 46–57.
  • [12] A. Astarita, A. Squillace, L. Carrino, Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets, Journal of Materials Engineering and Performance 23 (2014) 3754–3761.
  • [13] R. Moshwan, F. Yusof, et al., Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al–Mg–Cr–Mn (AA 5052-O) alloy, Materials and Design 66 (2015) 118–128.
  • [14] C. Jonckheere, B. de Meester, et al., Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys, Journal of Materials Processing Technology 213 (2013) 826– 837.
  • [15] S. Mandal, J. Rice, A.A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, Journal of Materials Processing Technology 203 (2008) 411–419.
  • [16] R. Kumar, K. Singh, S. Pandey, Process forces and heat input as function of process parameters in AA5083 friction stir welds, Transactions of Nonferrous Metals Society of China 22 (2012) 288–298.
  • [17] H. Su, C.S. Wu, S. Pittner, M. Rethmeier, Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding, Journal of Manufacturing Processes 15 (2013) 495–500.
  • [18] M. Mehta, K. Chatterjee, A. De, Monitoring torque and traverse force in friction stir welding from input electrical signatures of driving motors, Science and Technology of Welding and Joining 18 (2013) 191–197.
  • [19] S. Zimmer, L. Langlois, J. Laye, R. Bigot, Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque, The International Journal of Advanced Manufacturing Technology 47 (2010) 201–215.
  • [20] CORDIS EU, http://cordis.europa.eu/publication/rcn/ 12817_en.html.
  • [21] S. Cui, Z.W. Chen, J.D. Robson, A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir welding/processing, The International Journal of Machine Tools and Manufacture 50 (2010) 1023–1030.
  • [22] M.St. Weglowski, A. Pietras, Friction stir processing – analysis of the process, Archives of Metallurgy and Materials 56 (2011) 779–788.
  • [23] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modelling and Simulation in Materials Science and Engineering 12 (2004) 143–157.
  • [24] K.S. Arora, et al., Effect of process parameters on friction stir welding of aluminum alloy 2219-T87, The International Journal of Advanced Manufacturing Technology 50 (2010) 941–952.
  • [25] D. Trimble, J. Monaghan, et al., Force generation during friction stir welding of AA2024-T3, CIRP Annals – Manufacturing Technology 61 (2012) 9–12.
  • [26] A. Arora, A. De, T. DebRoy, Toward optimum friction stir welding tool shoulder diameter, Scripta Materialia 64 (2011) 9–12.
  • [27] J.T. Khairuddin, J. Abdullah, et al., Principles and thermo-mechanical model of friction stir welding, in: R. Kovacevic (Ed.), Welding Processes, 2012.
  • [28] C. Hamilton, M.St. Węglowski, S. Dymek, A simulation of friction stir processing for temperature and material flow, Metallurgical and Materials Transactions B 46 (2015) 1409– 1418.
  • [29] A. Arora, R. Nandan, A.P. Reynolds, T. DebRoy, Torque, power requirement and stir zone geometry in friction stir welding through modelling and experiments, Scripta Materialia 60 (2009) 13–16.
  • [30] M.S.T. Węglowski, S. Dymek, Microstructural modification of cast aluminium alloy AlSi9Mg via friction modified processing, Archives of Metallurgy and Materials 57 (2012) 71–78.
  • [31] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881–981.
  • [32] H. Conrad, Grain size dependence of the plastic deformation kinetics in Cu, Materials Science and Engineering A 341 (2003) 216–228.
  • [33] M. Richert, Features of cyclic extrusion compression method, structure & materials properties, Solid State Phenomena 114 (2006) 19–28.
  • [34] Y. Huang, T.G. Langdon, Advances in ultrafine-grained materials, Materials Today 16 (2013) 85–93.
  • [35] R.S. Mishra, M.W. Mahoney, Friction Stir Welding and Processing, ASM International, Materials Park, 2007.
  • [36] M.St. Węglowski, P. Sedek, C. Hamilton, Experimental analysis of residual stress in friction stir processed cast AlSi9Mg aluminium alloy, Key Engineering Materials 682 (2016) 18–23.
  • [37] A. Yazdipour, A.M. Shafiei, K. Dehghani, Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083, Materials Science and Engineering A 527 (2009) 192– 197.
  • [38] Z.W. Chen, S. Cui, W. Gao, T. Zhu, Microstructure development during friction stir processing of Al-7Si-0.3Mg cast alloy, in: 8th International Friction Stir Welding Symposium, Timmendorfer Strand, Germany, 18–20 May 2010, (2010) 1–8.
  • [39] R.M. Leal, I. Galvão, A. Loureiro, D.M. Rodrigues, Effect of friction stir processing parameters on the microstructural and electrical properties of copper, The International Journal of Advanced Manufacturing Technology 80 (2015) 1655–1663.
  • [40] D.U. XH, W.U. BaoLin, Using two-pass friction stir processing to produce nanocrystalline microstructure in AZ61magnesium alloy, Science in China Series E: Technological Sciences 52 (2009) 1751–1755.
  • [41] F.C. Liu, M.J. Tan, et al., Microstructural evolution and superplastic behavior in friction stir processed Mg–Li–Al– Zn alloy, Journal of Materials Science 48 (2013) 8539–8546.
  • [42] A.G. Rao, K.R. Ravi, B. Ramakrishnara, et al., Recrystallization phenomena during friction stir processing of hypereutectic aluminum-silicon alloy, Metallurgical and Materials Transactions A 44 (2012) 1519– 1529.
  • [43] K.N. Ramesh, S. Pradeep, V. Pancholi, Multipass friction-stir processing and its effect on mechanical properties of aluminum alloy 5086, Metallurgical and Materials Transactions A 43 (2012) 4311–4319.
  • [44] M.St. Węglowski, M. Kopyściański, S. Dymek, Friction stir processing multi-run modification of cast aluminum alloy, Key Engineering Materials 611-612 (2014) 1595–1600.
  • [45] Y.J. Kwon, M. Saito, I. Shigematsu, Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy, Journal of Materials Science Letters 21 (2002) 1473– 1476.
  • [46] H.S. Grewal, H.S. Arora, et al., Surface modification of hydroturbine steel using friction stir processing, Applied Surface Science 268 (2013) 547–555.
  • [47] C.I. Chang, X.H. Du, et al., Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing, Scripta Materialia 57 (2007) 209–212.
  • [48] N. Kumar, R.S. Mishra, Ultrafine-grained Al-Mg-Sc alloy via friction-stir processing, Metallurgical and Materials Transactions A 44 (2012) 934–945.
  • [49] M. Barmouz, M.K.B. Givi, J. Jafari, Evaluation of tensile deformation properties of friction stir processed pure copper: effect of processing parameters and pass number, Journal of Materials Engineering and Performance 23 (2014) 101–107.
  • [50] M. Kopyściański, M.St. Węglowski, et al., Electron microscopy investigation of a cast AlSi9Mg aluminum alloy subjected to friction stir processing with overlapping passes, International Journal of Materials Research 106 (2015) 813–817.
  • [51] H.S. Arora, H. Singh, B.K. Dhindaw, Some observations on microstructural changes in a Mg-based AE42 alloy subjected to friction stir processing, Metallurgical and Materials Transactions B 43 (2011) 92–108.
  • [52] J. Li, D.T. Zhang, F. Chai, W. Zhang, Microstructures and mechanical properties of WE43 magnesium alloy prepared by friction stir processing, Rare Metals (2014), http://dx.doi. org/10.1007/s12598-014-0306-3 (Forthcoming).
  • [53] N. Yasavol, H. Jafari, Microstructure, mechanical and corrosion properties of friction stir-processed AISI D2 tool steel, Journal of Materials Engineering and Performance 24 (2015) 2151–2157.
  • [54] M.J. Rubal, M.C. Juhas, J.C. Lippold, Microstructure evolution during friction stir processing of Ti-5111, in: 8th International Symposium on Friction Stir Welding, Timmendorfer Strand, Germany, 18–20 May 2010, (2010) 190–203.
  • [55] C.J. Lee, J.C. Huang, P.J. Hsieh, Mg based nano-composites fabricated by friction stir processing, Scripta Materialia 54 (2006) 1415–1420.
  • [56] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Nanocrystallized magnesium alloy – uniform dispersion of C60 molecules, Scripta Materialia 55 (2006) 1067–1070.
  • [57] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Materials Science and Engineering A 433 (2006) 50–54.
  • [58] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, MWCNTs/ AZ31 surface composites fabricated by friction stir processing, Materials Science and Engineering A 419 (2006) 344–348.
  • [59] P. Asadi, G. Faraji, M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), The International Journal of Advanced Manufacturing Technology 51 (2010) 247–260.
  • [60] M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/ Al2O3 nanocomposites fabricated by friction stir processing, Materials and Design 32 (2011) 2034–2041.
  • [61] G. Faraji, O. Dastani, S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/ Al2O3 surface composite produced by FSP, Journal of Materials Engineering and Performance 20 (2011) 1583– 1590.
  • [62] D. Khayyamin, A. Mostafapour, R. Keshmiri, The effect of process parameters on microstructural characteristics ofAZ91/SiO2 composite fabricated by FSP, Materials Science and Engineering A 559 (2013) 217–221.
  • [63] M. Golmohammadi, M. Atapour, A. Ashrafi, Fabrication and wear characterization of an A413/Ni surface metal matrix composite fabricated via friction stir processing, Materials and Design 85 (2015) 471–482.
  • [64] L.B. Johannes, L.L. Yowell, et al., Survivability of single- walled carbon nanotubes during friction stir processing, Nanotechnology 17 (2006) 3081–3084.
  • [65] S.M. Howard, B.K. Jasthi, et al., Friction surface reaction processing in aluminium substrates, in: Friction Stir Welding and Processing III TMS Annual Meeting, San Francisco, (2005) 139–146.
  • [66] R.S. Mishra, Z.Y. Ma, et al., Friction stir processing: a novel technique for fabrication of surface composite, Materials Science and Engineering A 341 (2003) 307–310.
  • [67] E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface, Science and Technology of Welding and Joining 14 (2009) 413–425.
  • [68] E.R.I. Mahmoud, K. Ikeuchi, M. Takahashi, Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing, Science and Technology of Welding and Joining 13 (2008) 607–618.
  • [69] S.A. Alidokht, A. Abdollah-zadeh, et al., Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Materials and Design 32 (2011) 2727–2733.
  • [70] A. Dolatkhah, P. Golbabaei, et al., Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing, Materials and Design 37 (2012) 458–464.
  • [71] E.R.I. Mahmoud, M. Takahashi, et al., Fabrication of surface-hybrid-MMCs layer on aluminum plate by friction stir processing and its wear characteristics, Materials Transactions 50 (2009) 1824–1831.
  • [72] C.M. Maxwell Rejil, et al., Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate, Materials Science and Engineering A 552 (2012) 336–344.
  • [73] S. Soleymani, A. Abdollah-zadeh, S.A. Alidokht, Microstructural and tri-bological properties of Al5083 based surface hybrid composite produced by friction stir processing, Wear 278 (2012) 41–47.
  • [74] B. Zahmatkesh, M.H. Enayati, A novel approach for development of surface nanocomposite by friction stir processing, Materials Science and Engineering A 527 (2010) 6734–6740.
  • [75] A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Materials Science and Engineering A 500 (2009) 84–91.
  • [76] M. Zohoor, M.K.B. Givi, P. Salami, Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing, Materials and Design 39 (2012) 358– 365.
  • [77] M. Barmouz, M.K.B. Givi, J. Seyfi, On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior, Materials Characterization 62 (2011) 108–117.
  • [78] M. Barmouz, M.K.B. Givi, Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior, Composites Part A: Applied Science and Manufacturing 42 (2011) 1445–1453.
  • [79] R. Sathiskumar, N. Murugan, I. Dinaharan, S.J. Vijay, Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing, Materials Characterization 84 (2013) 16–27.
  • [80] M. Barmouz, J. Seyfi, M.K.B. Givi, I. Hejazi, S. Davachi, A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing, Materials Science and Engineering A 528 (2011) 3003–3006.
  • [81] A. Ghasemi-Kahrizsangi, S.F. Kashani-Bozorg, Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing, Surface and Coatings Technology 209 (2012) 15–22.
  • [82] A. Ghasemi-Kahrizsangi, S.F. Kashani-Bozorg, M. Moshref- Javadi, Effect of friction stir processing on the tribological performance of Steel/Al2O3 nanocomposites, Surface and Coatings Technology 276 (2015) 507–515.
  • [83] A. ShamsipurA, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer, Surface and Coatings Technology 206 (2011) 1372–1381.
  • [84] A. Shamsipur, et al., Production of in-situ hard Ti/TiN composite surface layers on CP-Ti using reactive friction stir processing under nitrogen environment, Surface and Coatings Technology 218 (2013) 62–70.
  • [85] A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A.P. Gerlich, Strengthening analyses and mechanical assessment of Ti/ Al2O3 nano-composites produced by friction stir processing, Materials Science and Engineering A 631 (2015) 75–85.
  • [86] V. Sharma, U. Prakash, et al., Surface composites by friction stir processing: a review, Journal of Materials Processing Technology 224 (2002) 117–134.
  • [87] D.K. Lim, T. Shibayanagi, A.P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing, Materials Science and Engineering A 507 (2009) 194–199.
  • [88] M.N. Avettand-Fènoël, A. Simar, R. Shabadi, R. Taillard, B. de Meester, Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing, Material Design 60 (2014) 343–357.
  • [89] Y. Huang, Y. Wang, et al., Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing, Materials and Design 59 (2014) 274–278.
  • [90] R.M. Miranda, T.G. Santos, et al., Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, Journal of Materials Processing Technology 213 (2013) 1609–1615.
  • [91] Y. Mazaheri, F. Karimzadeh, M.H. Enayati, A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing, Journal of Materials Processing Technology 211 (2011) 1614–1619.
  • [92] R. Bauri, D. Yadav, G. Suhas, Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite, Materials Science and Engineering A 528 (2011) 4732–4739.
  • [93] H. Farnoush, A. Sadeghi, et al., An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition, Ceramics International 39 (2013) 1477–1483.
  • [94] F. Khodabakhshi, A.P. Gerlich, A. Simchi, A.H. Kokabi, Cryogenic friction-stir processing of ultrafine-grained Al– Mg–TiO2 nanocomposites, Materials Science and Engineering A 620 (2015) 471–482.
  • [95] B. Li, Y. Shen, L. Luo, W. Hu, Fabrication of TiCp/Ti–6Al–4V surface composite via friction stir processing (FSP): process optimization, particle dispersion-refinement behavior andhardening mechanism, Materials Science and Engineering 574 (2013) 75–85.
  • [96] J. Qian, J. Li, et al., In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing, Materials Science and Engineering A 550 (2012) 279–285.
  • [97] A. Kurt, I. Uygur, E. Cete, Surface modification of aluminium by friction stir processing, Journal of Materials Processing Technology 211 (2011) 313–317.
  • [98] R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Science and Technology of Welding and Joining 16 (2011) 325–342.
  • [99] C.M. Chen, R. Kovacevic, Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding, International Journal of Machine Tools and Manufacture 44 (2004) 1205–1214.
  • [100] G.K. Padhy, C.S. Wu, S. Gao, Auxiliary energy assisted friction stir welding – status review, Science and Technology of Welding and Joining 20 (2015) 631–649.
  • [101] K. Park, Development and analysis of ultrasonic assisted friction stir welding process, (Doctoral Thesis), The University of Michigan, 2009.
  • [102] A. Rusinko, Analytical description of ultrasonic hardening and softening, Ultrasonics 51 (2011) 709–714.
  • [103] J. Hung, C. Lin, Investigations on the material property changes of ultrasonic vibration assisted aluminum alloy upsetting, Materials and Design 45 (2013) 412–420.
  • [104] S. Kumar, C.S. Wu, G.K. Padhy, W. Ding, Application of ultrasonic vibrations in welding and metal processing: a status review, Journal of Manufacturing Processes 26 (2017) 295–322.
  • [105] L. Ruilin, H. Diqiu, L. Luocheng, Y. Shaoyong, Y. Kunyu, A study of the temperature field during ultrasonic-assisted friction-stir welding, The International Journal of Advanced Manufacturing Technology 73 (2014) 321–327.
  • [106] H. Ma, D. He, J. Liu, Ultrasonically assisted friction stir welding of aluminium alloy 6061, Science and Technology of Welding and Joining 20 (2015) 216–221.
  • [107] B. Strass, G. Wagner, D. Eifler, Realization of Al/Mg-hybrid joints by ultrasound supported friction stir welding, Materials Science Forum 783–786 (2014) 1814–1819.
  • [108] X.C. Liu, C.S. Wu, G.K. Padhy, Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding, Science and Technology of Welding and Joining 20 (2015) 345–352.
  • [109] R.F. Zinati, Experimental evaluation of ultrasonic-assisted friction stir process effect on in situ dispersion of multi-walled carbon nanotubes throughout polyamide 6, The International Journal of Advanced Manufacturing Technology 81 (2015) 2087–2098.
  • [110] S. Kumar, Ultrasonic assisted friction stir processing of 6063 aluminum alloy, Archives of Civil and Mechanical Engineering 16 (2016) 473–484.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a58ef1d-c1a9-47be-80ac-eb6102e57084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.