PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Determination of soil infiltration rate equation based on soil properties using multiple linear regression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Infiltration process plays important role in water balance concept particularly in runoff analysis, groundwater recharged, and water conservation. Hence, increasing knowledge concerning infiltration process becomes essential for water manager to gain an effective solution to water resources problems. This study employed multiple linear regression for estimating infiltration rate where the soil properties used as the predictor variable and measured infiltration rate as the response variable. Field measurement was conducted at sixteen points to obtain infiltration rate using double ring infiltrometer and soil properties namely soil porosity, silt, clay, sand content, degree of saturation, and water content. The result showed that measured infiltration rate had an average initial infiltration rate (f0) of 6.92 mm∙min–1 and final infiltration rate (fc) of 1.49 mm∙min–1. Soil porosity and sand content showed a positive correlation with infiltration rate by 0.842, 0.639, respectively, while silt, clay, water content, and degree of saturation exhibited a negative correlation by –0.631, –0.743, –0.66 and –0.49, respectively. Three types of regression equations were established based on type of soil properties used as predictor variables. The model performance analysis was conducted for each equation and the result shows that the equation with five predictor variables fMLR_3 = – 62.014 + 1.142 soil porosity – 0.205 clay, – 0.063 sand – 0.301, silt + 0.07 soil water content with R2 (0.87) and Nash–Sutcliffe (0.998) gave the best result for estimating infiltration rate. The study found that soil porosity contributes mostly to the regression equation that indicates great influence in controlling soil infiltration behavior.
Wydawca
Rocznik
Tom
Strony
77--88
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab.
Twórcy
  • University of Brawijaya, Faculty of Engineering, Water Resources Engineering Department, MT. Haryono Street No. 167, 65145, Malang, Indonesia
autor
  • University of Brawijaya, Faculty of Engineering, Water Resources Engineering Department, MT. Haryono Street No. 167, 65145, Malang, Indonesia
Bibliografia
  • ABDUL-WAHAB S.A., BAKHEIT C.S., AL-ALAWI S.M. 2005. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software. Vol. 20. No. 10 p. 1263–1271. DOI 10.1016/j.envsoft.2004.09.001.
  • AHMED K., SHAHID S., ISMAIL T., NAWAZ N., WANG X.J. 2018. Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmosfera. Vol. 31. No. 3 p. 301–316. DOI 10.20937/ATM.2018.31.03.06.
  • CZYŻYK F., ŚWIERKOT Z. 2017. Recharging infiltration of precipitation water through the light soil, in the absence of surface runoff. Journal of Water and Land Development. Vol. 32 p. 25–30. DOI 10.1515/jwld-2017-0003.
  • DEWIDAR A.Z., AL-GHOBARI H., ALATAWAY A. 2019. Developing a fuzzy logic model for predicting soil infiltration rate based on soil texture properties. Water SA. Vol. 45. No. 3 p. 400–410. DOI 10.17159/wsa/2019.v45.i3.6737.
  • FERRARO M.B., COLUBI A., GONZÁLEZ-RODRÍGUEZ G., COPPI R. 2011. A determination coefficient for a linear regression model with imprecise response. Environmetrics. Vol. 22. No. 4 p. 516–529. DOI 10.1002/env.1056.
  • FRATTA D., AGUETTANT J., SMITH L. 2007. Introduction to soil mechanics laboratory testing. 1st ed. Boca Raton. CRC Press. ISBN 978-1-4200-4562-8 pp. 229.
  • GREEN W.H., AMPT G.A. 1911. Studies on soil physics. The Journal of Agricultural Science. Vol. 4. No. 1 p. 1–24.
  • HAIR J.F., BLACK W.C., BABIN B.J., ANDERSON R.E., BLACK W.C., ANDERSON R.E. 2019. Multivariate data analysis. 8th ed. Hampshire. Cengage Learning EMEA. ISBN 978-1-4737-5654-0 pp. 813.
  • HARISUSENO D., KHAERUDDIN D.N., HARIBOWO R. 2019. Time of concentration based infiltration under different soil density, water content, and slope during a steady rainfall. Journal of Water and Land Development. Vol. 41 p. 61–68. DOI 10.2478/jwld-2019-0028.
  • HORTON R.E. 1940. An approach toward a physical interpretation of infiltration-capacity. In: Soil Science Society of American p. 399–417.
  • JIANG Y., CHEN W., WANG G., SUN G., ZHANG F. 2017. Influence of initial dry density and water content on the soil–water characteristic curve and suction stress of a reconstituted loess soil. Bulletin of Engineering Geology and the Environment. Vol. 76. No. 3 p. 1085–1095. DOI 10.1007/s10064-016-0899-x.
  • KNOBEN W.J.M., FREER J.E., WOODS R.A. 2019. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Science Vol. 23. No. 10 p. 4323–4331. DOI 10.5194/HESS-23-4323-2019.
  • KOSTIAKOV A. 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for the purposes of amelioration. Transactions of the Sixth Congress of International Society of Soil Science Moscow Part A p. 15–21.
  • LIN F.J. 2008. Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Quality and Quantity. Vol. 42. No. 3 p. 417–426. DOI 10.1007/ s11135-006-9055-1.
  • LIPIEC J., KUŚ J., SŁOWIŃSKA-JURKIEWICZ A., NOSALEWICZ A. 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil and Tillage Research. Vol. 89. No. 2 p. 210–220. DOI 10.1016/j.still.2005.07.012.
  • MAO L., LI Y., HAO W., ZHOU X., XU C., LEI T. 2016. A new method to estimate soil water infiltration based on a modified Green-Ampt model. Soil and Tillage Research. Vol. 161 p. 31–37. DOI 10.1016/j.still.2016.03.003.
  • MCCUEN R.H., KNIGHT Z., CUTTER A.G. 2006. Evaluation of the Nash–Sutcliffe efficiency index. Journal of Hydrologic Engineering. Vol. 11. No. 6 p. 597–602. DOI 10.1061/(ASCE) 1084-0699(2006)11:6(597).
  • MONTESINOS-LÓPEZ A., MONTESINOS-LÓPEZ O.A., DE LOS CAM-POS G., CROSSA J., BURGUEÑO J., LUNA-VAZQUEZ F.J. 2018. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Plant Methods. Vol. 14. No. 1 p. 1–17. DOI 10.1186/ s13007-018-0314-7.
  • MUBARAK I., ANGULO-JARAMILLO R., MAILHOL J.C., RUELLE P., KHALEDIAN M., VAUCLIN M. 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management. Vol. 97. No. 10 p. 1517–1526. DOI 10.1016/j.agwat.2010.05.005.
  • NIE W.,MA X., FEI L. 2017. Evaluation of infiltration models and variability of soil infiltration properties at multiple scales. Irrigation and Drainage. Vol. 66. No. 4 p. 589–599. DOI 10.1002/ird.2126.
  • NIMMO J. 2004. Porosity and pore size distribution. In: Encyclopedia of soils in the environment. London. Elsevier p. 295–303.
  • PATLE G.T., SIKAR T.T., RAWAT K.S., SINGH S.K. 2019. Estimation of infiltration rate from soil properties using regression model for cultivated land. Geology, Ecology, and Landscapes. Vol. 3. No. 1 p. 1–13. DOI 10.1080/24749508.2018. 1481633.
  • PAWLICZ A., NAPIERALA T. 2017. The determinants of hotel room rates: An analysis of the hotel industry in Warsaw, Poland. International Journal of Contemporary Hospitality Management. Vol. 29. No. 1 p. 571–588. DOI 10.1108/IJCHM-12-2015-0694.
  • PHILIP J.R. 1956. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science. Vol. 85. No. 6 p. 333–337.
  • RASHIDI M., HAJIAGHAEI A., AHMADBEYKI A. 2014. Prediction of soil infiltration rate based on particle size distribution, bulk density, organic matter and moisture content of soil. American-Eurasian Journal of Scientific Research. Vol. 4. No. 1 p. 24–29. DOI 10.5829/idosi.aerj.2014.4.1.1119.
  • RENAUD O., VICTORIA-FESER M.P. 2010. A robust coefficient of determination for regression. Journal of Statistical Planning and Inference. Vol. 140. No. 7 p. 1852–1862. DOI 10.1016/ j.jspi.2010.01.008.
  • SINHA R., SINGH P. 2016. Evaluation of infiltration behaviour and soil characteristics in Dhanbad – Jharia Township Area, Jharkhand, India. Current World Environment. Vol. 11. No. 2 p. 584–591. DOI 10.12944/cwe.11.2.29.
  • SUN D., SUN W., XIANG L. 2010. Effect of degree of saturation on mechanical behaviour of unsaturated soils and its elastoplastic simulation. Computers and Geotechnics. Vol. 37. No. 5 p. 678–688. DOI 10.1016/j.compgeo.2010.04.006.
  • VAN DE GENACHTE G., MALLANTS D., RAMOS J., DECKERS J.A., FEYEN J. 1996. Estimating infiltration parameters from basic soil properties. Hydrological Processes. Vol. 10. No. 5 p. 687–701. DOI 10.1002/(SICI)1099-1085(199605)10:5< 687::AID-HYP311>3.0.CO;2-P.
  • YE X., WANG S. WANG Q., SLOAN S.W., SHENG D. 2018. The influence of the degree of saturation on compaction-grouted soil nails in sand. Acta Geotechnica. Vol. 3456789. DOI 10.1007/s11440-018-0706-x.
  • YORK R. 2012. Residualization is not the answer: Rethinking how to address multicollinearity. Social Science Research. Vol. 41. No. 6 p. 1379–1386. DOI 10.1016/j.ssresearch.2012.05. 014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a47724f-7e4d-42a2-8fac-18641fd53f6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.