PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid axial mixing in solid foams

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mieszanie osiowe w pianach stałych
Języki publikacji
EN
Abstrakty
EN
Metal and ceramic solid foams were examined to determine axial dispersion for liquids (water and 45% glycerol solution) single phase flow; the results obtained for the packed bed of spheres were used for comparison. The influence of the liquid viscosity on axial dispersion was tested. Moreover, flow resistance was also measured.
PL
Wyznaczono dyspersję osiową dla jednofazowego przepływu cieczy (wody i 45% roztworu gliceryny) przez złoże metalowych i ceramicznych pian stałych. Otrzymane wyniki zostały porównane z wartościami właściwymi dla złoża kulek. Określono wpływ lepkości cieczy na mierzony parametr. Dodatkowo wyznaczono również opory przepływu.
Rocznik
Tom
Strony
81--97
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Piatek M, Gancarczyk A, Iwaniszyn M, Jodlowski P.J., Łojewska J., Kołodziej A., 2017. Gas-phase flow resistance of metal foams: Experiments and modeling. AlChE J., 63; 1799-1803. DOI: 10.1002/aic.15730.
  • [2] Edouard D., Lacroix M., Pham C., Mbodji M., Pham-Huu C., 2008. Experimental measurements and multiphase flow models in solid SiC foam beds. AlChE J., 54, 2823-2832. DOI: 10.1002/aic.11594.
  • [3] Huang K., Lu K., Ni S., Tong S., 2012. Studies on preparation and catalytic performances of monolithic solid acid catalysts. Asian J. Chem., 24, 997-1002.
  • [4] Della Torre A., Montenegro G., Tabor G.R., Wears M.L., 2014. CFD characterization of flow regimes inside open cell foam substrates. Int. J. Heat Fluid Flow., 50, 72-82. DOI: 10.1016/j.ijheatfluidflow.2014.05.005.
  • [5] Saber M., Huu T.T., Pham-Huu C., Edouard D., 2012. Residence time distribution, axial liquid dispersion and dynamic–static liquid mass transfer in trickle flow reactor containing þ-SiC open-cell foams. Chem. Eng. J., 185-186, 294-299. DOI: 10.1016/j.cej.2012.01.045.
  • [6] Hutter C., Zenklusen A., Lang R., von Rohr P.R., 2011. Axial dispersion in metal foams and streamwise-periodic porous media. Chem. Eng. Sci. 66, 1132-1141. DOI: 10.1016/j.ces.2010.12.016.
  • [7] Levenspiel O. 1999. Chemical Reaction Engineering. Third edition, John Wiley and Sons, New York.
  • [8] Hill C, Root T. 2014. Introduction to Chemical Engineering Kinetics and Reactor Design. John Wiley and Sons, Hoboken, New Jersey.
  • [9] Kusse B.R., Westwig E.A., 1998. Mathematical Physics,.WILEY-VCH.
  • [10] Fahim M.A., 1982. Parameter estimation from tracer response measurement. Chem. Eng. J., 25, 1-8.
  • [11] Gancarczyk A., Iwaniszyn M., Piatek M., Leszczynski B., Ziółkowski G., Piech D., Janus B., Kleszcz T., Kołodziej A. 2016, Parametry morfologiczne pian stałych – metody i wyzwania. Prace Naukowe IICh PAN, 20, 63-75.
  • [12] Delgado J.M.P.Q., 2006. A critical review of dispersion in packed beds. Heat Mass Transfer, 42, 279-310. DOI: 10.1007/s00231-005-0019-0.
  • [13] Montillet A., Comiti J., Legrand J. 1993. Axial-dispersion in liquid flow-through packed reticulated metallic foams and fixed-beds of different structures. Chem. Eng. J. Bioch. Eng., 52, 63-71. DOI: 10.1016/0300-9467(93)80050-X.
  • [14] Saber M., Pham-Huu C., Edouard D. 2012. Axial dispersion based on the residence time distribution curves in a millireactor filled with þ-SiC foam catalyst. Ind. Eng. Chem. Res., 51, 15011-15017. DOI: 10.1021/ie3017829.
  • [15] Mohammed I., Bauer T., Schubert M., Lange R. 2013. Hydrodynamic multiplicity in a tubular reactor with solid foam packings. Chem. Eng. J., 231, 334-344. DOI: 10.1016/j.cej.2013.07.024.
  • [16] Jacques G.L., Hennico A., Moon J.S., Vermeulen T. 1963. Longitudinal dispersion in single-phase liquid flow through ordered and random packings. Lawrernce Rad. Lab. Report UCRL 10696.
  • [17] Pangarkar K., Schildhauer T.J., van Ommen J.R., Nijenhuis J., Kapteijn F., Moulijn J.A. 2008. Structured packings for multiphase catalytic reactors. Ind. Eng. Chem. Res., 47, 3720-3751. DOI: 10.1021/ie800067r.
  • [18] Boomsma K., Poulikakos D. 2002. The effects of compression and pore size variations on the liquid flow characteristics in metal foams. J. Fluid Eng., 124, 263-272. DOI: 10.1115/1.1429637.
  • [19] Kołodziej A., Łojewska J., Jaroszynski M., Gancarczyk A., Jodłowski P. 2012. Heat transfer and flow resistance for stacked wire gauzes: Experiments and modelling. Int. J. Heat Fluid Flow, 33, 101-108. DOI: 10.1016/j.ijheatfluidflow.2011.11.006.
  • [20] Patcas F.C., Garrido G.I., Kraushaar-Czarnetzki B. 2007. CO oxidation over structured carriers: A comparison of ceramic foams, honeycombs and beads. Chem. Eng. Sci., 62, 3984-3990. DOI: 10.1016/j.ces.2007.04.039.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a454e4a-0261-4f62-81e8-9de31f7bb94c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.