Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Surface roughness is a reliable indicator of bone cell damage in bone-cutting processes. This novel study investigates the effects of spindle speed, feed rate, and cutting tool materials on milling artificial bone specimens. Design/methodology/approach: Since bone cutting is an orthogonal cutting technique, bone machining was carried out using the milling process. As per the requirements of the objectives, four milling cuts were carried out across each workpiece using two different materials-based customized cutting tools, SS316 and ZrO2. The machining parameters used were 0.03 mm/tooth feed rate, 900 m/min and 1000 m/min cutting speed and 1.3 mm depth of cut. Surface roughness was measured in two parameters, Ra and Rz, for each machined cut from SS316 and novel ZrO2 tools. Findings: At 1000 m/mm, SS316-based cutting recorded a maximum cutting temperature of 39°C. With increased cutting speed, Ra values from both cutting tools were raised. While Rz values were unstable in 900 m/mm cuttings, they steadily increased with the rise in cutting speed. ZrO2-based cutting at 900 m/mm speed produced the maximum groove possible, measuring 9.487 mm, the closest to the tool's 9.5 mm diameter. Experiment results demonstrate that increasing cutting speed has little impact on Ra values, but it generates uniformity in Rz, which leads to minimal surface roughness. In conclusion, ZrO2-based cuttings have shown proper uniformity in Rz values against SS316. Research limitations/implications: Further experiments based on changes in cutting tool materials, cutting parameters, and types of cutting tools will provide enough data to introduce ceramic tools in bone-cutting procedures. Originality/value: The novelty of the study is the introduction of a customized ZrO2 ceramic-based cutting tool for bone-cutting procedures.
Wydawca
Rocznik
Tom
Strony
34--41
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand
autor
- Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand
autor
- Department of Mechanical and Automotive Engineering, Universiti of Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
Bibliografia
- [1] S. Pal, Mechanical properties of biological materials, in: Design of artificial human joints and organs, Springer, Boston, MA, 2014, 23-40. DOI: https://doi.org/10.1007/978-1-4614-6255-2_2
- [2] V. Tahmasbi, M. Qasemi, R. Ghasemi, R. Gholami, Experimental study and sensitivity analysis of force behavior in cortical bone milling, Medical Engineering and Physics 105 (2022) 103821. DOI: https://doi.org/10.1016/j.medengphy.2022.103821
- [3] A. Cseke, R. Heinemann, The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials, Medical Engineering and Physics 51 (2018) 24-30. DOI: https://doi.org/10.1016/j.medengphy.2017.10.009
- [4] E. Sedlin, C. Hirsch, Factors affecting the determination of the physical properties of femoral cortical bone, Acta Orthopaedica Scandinavica 37/1 (1966) 29-48. DOI: https://doi.org/10.3109/17453676608989401
- [5] R. Pandey, S. Panda, Drilling of bone: A comprehensive review, Journal of Clinical Orthopaedics and Trauma 4/1 (2013) 15-30. DOI: https://doi.org/10.1016/j.jcot.2013.01.002
- [6] K. Denis, G. Van Ham, J. Vander slotten, R. Van Audekercke, G. Van der perre, J. De Schutter, J. Kruth, J. Bellemans, G. Fabry, Influence of bone milling parameters on the temperature rise, milling forces and surface flatness in view of robot-assisted total knee arthroplasty, International Congress Series 1230 (2001) 300-306. DOI: https://doi.org/10.1016/S0531- 5131(01)00067-X
- [7] S. Toksvig-Larsen, L. Ryd, A. Lindstrand, Temperature influence in different orthopaedic saw blades, The Journal of Arthroplasty 7/1 (1992) 21-24. DOI: https://doi.org/10.1016/0883-5403(92)90027-N [8] M. Mia, Multi-response optimization of end milling parameters under through-tool cryogenic cooling condition, Measurement 111 (2017) 134-145. DOI: https://doi.org/10.1016/j.measurement.2017.07.033
- [9] Z. Liao, D.A. Axinte, On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission, Journal of Materials Processing Technology 229 (2016) 82-93. DOI: https://doi.org/10.1016/j.jmatprotec.2015.09.016
- [10] P. Ndaruhadi, S. Sharif, D. Kurniawan, Effect of Different Cutting Speed and Feed Rate on surface roughness in femur bone drilling, Procedia Manufacturing 2 (2015) 208-211. DOI: https://doi.org/10.1016/j.promfg.2015.07.036
- [11] K. Alam, A. Mitrofanov, V. Silberschmidt, Measurements of Surface Roughness in Conventional and Ultrasonically assisted bone drilling, American Journal of Biomedical Sciences 1/4 (2009) 312-320. DOI: https://doi.org/10.5099/aj090400312
- [12] P. Wibowo Ndaruhadi, S. Sharif, M. Noordin, D. Kurniawan, Effect of cutting parameters on surface roughness in turning of bone, Advanced Materials Research 845 (2014) 708-712. DOI: https://doi.org/10.4028/www.scientific.net/AMR.845. 708
- [13] G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D. Vedrina, A. Antabak, Thermal osteonecrosis and bone drilling parameters revisited, Archives of Orthopaedic and Trauma Surgery 128 (2008) 71-77. DOI: https://doi.org/10.1007/s00402-007-0427-3
- [14] S. Isler, E. Cansiz, C. Tanyel, M. Soluk, F. Selvi, Z. Cebi, The effect of irrigation temperature on bone healing, International Journal of Medical Science 8/8 (2011) 704-708. DOI: https://doi.org/10.7150/ijms.8.704
- [15] D. Kurniawan, N. Jiawkok, M. Noordin, Machining conditions effect to machining temperature and forces in orthogonal machining of bone, Advanced Materials Research 658 (2013) 223-226. DOI: https://doi.org/10.4028/www.scientific.net/AMR.658. 223
- [16] P. Addepalli, W. Sawangsri, S.A.C. Ghani, A qualitative study on cutting tool materials for bone surgeries, Materials Today: Proceedings 47/10 (2021) 2457-2462. DOI: https://doi.org/10.1016/j.matpr.2021.04.549
- [17] L. Saldaña, A. Méndez-Vilas, L. Jiang, M. Multigner, J. González-Carrasco, M. Pérez-Prado, M. González- Martín, L. Munuera, N. Vilaboa, In vitro biocompatibility of an ultrafine grained zirconium, Biomaterials 28/30 (2007) 4343-4354. DOI: https://doi.org/10.1016/j.biomaterials.2007.06.015
- [18] R. Hoerth, M. Katunar, A. Gomez Sanchez, J. Orellano, S. Ceré, W. Wagermaier, J. Ballarre, A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality, Journal of Materials Science: Materials in Medicine 25 (2014) 411-422. DOI: https://doi.org/10.1007/s10856-013- 5074-3
- [19] P. Addepalli, W. Sawangsri, S.A.C. Ghani, Manufacturing of Zirconium Oxide based Milling Insert, India Patent 202341032191, 06 May 2023.
- [20] P. Addepalli, W. Sawangsri, S.A.C. Ghani, Manufacturing of Stainless Steel 316 Grade Milling Insert Through Maching Process, India Patent 202341030852, 24 April 2023.
- [21] L. Virasak, Milling Machines - Speeds, Feeds and Tapping, in: Manufacturing Processes 4-5, Open Oregon Educational Resources, Oregon, 2019, 23-29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a41bdc1-d7bf-4544-a57a-64448511ba61