PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Moving targets visual tracking in complex scenes based on PCR6 combine rules

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to investigate multi-moving targets visual tracking in complex scenes based on PCR6 (proportional conflict redistribution 6) combine rules, and improve the poor tracking performance in complex scenes. A tracking model of multi-moving targets was established by combining the color, edge and texture features of the targets, and the corresponding tracking algorithm was designed based on the framework of PF (particle filters) and PCR6 rules. The tracking process of moving targets including different scenes of mutual occlusion, proportion or illumination change was analyzed to validate the reliability and stability of the introduced method. The results show that the number of particles is significantly reduced, which helps to decrease the computational complexity and storage cost for tracking multi-targets of complex scenes. Meanwhile, the adaptive ability of fusion high conflict evidences is improved, and the multi-targets tracking performance is greatly elevated based on bad tracking surroundings. The research will further extend the applied scopes of evidence theory for PCR6 combine rules, and will meets the practical demand of multi-targets tracking in complex scenes. Especially, it has very important engineering application value for improving the artificial intelligence algorithm of visual tracking.
Czasopismo
Rocznik
Strony
609--624
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Xi’an International University, Xi’an 710077, PR China
Bibliografia
  • [1] CIAPARRONE G., SÁNCHEZ F.L., TABIK S., TROIANO L., TAGLIAFERRI R., HERRERA F., Deep learning in video multi-object tracking: A survey, Neurocomputing 381, 2020: 61-88. https://doi.org/10.1016/j.neucom.2019.11.023
  • [2] ZHANG Y.J., BAI X.H., XIE B.H., Multi-object tracking algorithm based on CNN-transformer feature fusion, Computer Engineering and Applications 60(2), 2024: 180-190.
  • [3] MENG L., YANG X., A survey of object tracking algorithms, Acta Automatica Sinica 45, 2019: 1244-1260.https://doi.org/10.16383/j.aas.c180277
  • [4] KWON O.H., TANKE J., GALL J., Recursive Bayesian filtering for multiple human pose tracking from multiple cameras, [In] Computer Vision – ACCV 2020, Lecture Notes in Computer Science, Vol. 12623, Springer, Cham, 2021: 438-453. https://doi.org/10.1007/978-3-030-69532-3_27
  • [5] GORDON N.J., SALMOND D.J., SMITH A.F.M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings F (Radar and Signal Processing) 140(2), 1993: 107-113. https://doi.org/10.1049/ip-f-2.1993.0015
  • [6] SHARIATI H., MOOSAVI H., DANESH M., Application of particle filter combined with extended Kalman filter in model identification of an autonomous underwater vehicle based on experimental data, Applied Ocean Research 82, 2019: 32-40. https://doi.org/10.1016/j.apor.2018.10.015
  • [7] ALAM S.A., GUSTAFSSON O., Improved particle filter resampling architectures, Journal of Signal Processing Systems 92, 2020: 555-568. https://doi.org/10.1007/s11265-019-01489-y
  • [8] DU S., DENG Q., Unscented particle filter algorithm based on divide-and-conquer sampling for target tracking, Sensors 21(6), 2021: 2236. https://doi.org/10.3390/s21062236
  • [9] MACLEAN J., VAN VLECK E.S., Particle filters for data assimilation based on reduced-order data models, Quarterly Journal of the Royal Meteorological Society 147(736), 2021: 1892-1907. https://doi.org/10.1002/qj.4001
  • [10] NIU X.Y., FENG G.S., State of charge and state of power estimation for power battery in HEV based on optimized particle filtering, Journal of Computational Methods in Sciences and Engineering 21(2), 2021: 257-276. https://doi.org/10.3233/JCM-204537
  • [11] WEN J. W., ZHAN Y. W., LI C. H., et al., Design of atrous filter to strengthen small object detection capability of SSD, Application Research of Computers 36, 2019: 861-865.
  • [12] ZHAO Z.Y., JIANG Y.F., WANG S., et al., Particle filter algorithm based on adaptive threshold and hierarchical capacity, Control Engineering of China 30, 2023: 1990-1998.
  • [13] AIROUCHE M., BENTABET L., ZELMAT M., GAO G., Pedestrian tracking using color, thermal and location cue measurements: a DSmT-based framework, Machine Vision and Applications 23(5), 2012:999-1010. https://doi.org/10.1007/s00138-011-0342-z
  • [14] MA Y.Z., ZHANG J.D., QIN G.H., JIN J.Y., ZHANG K.P., D.Y. PAN, 3D multi-object tracking based on dual-tracker and D-S evidence theory, IEEE Transactions on Intelligent Vehicles 8(3), 2023: 2426-2436. https://doi.org/10.1109/TIV.2022.3216102
  • [15] CHEN J., CHENG M., Fault diagnosis of rolling bearing acoustic vibration signal based on tSNE-ASC feature selection and DSmT evidence fusion, Journal of Electronic Measuremrnt and Instrumentation 36, 2022: 195-204.
  • [16] FANG Y.W., Adaptive visual tracking method of fusing multiple information, Latin American Applied Research 50(1), 2020: 27-32. https://doi.org/10.52292/j.laar.2020.165
  • [17] MORAS J., DEZERT J., PANNETIER B., Grid occupancy estimation for environment perception based on belief functions and PCR6, Proceedings of the SPIE, Vol. 9474, Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV, 2015: 94740P. https://doi.org/10.1117/12.2177653
  • [18] YIN S., NA J.H., CHOI J.Y., OH S., Hierarchical Kalman-particle filter with adaptation to motion changes for object tracking, Computer Vision and Image Understanding 115(6), 2011: 885-900. https://doi.org/10.1016/j.cviu.2011.02.010
  • [19] MACLEAN J., VAN VLECK E.S., Particle filters for data assimilation based on reduced order data models, Quarterly Journal of the Royal Meteorological Society 147, 2021: 1892-1907. https://doi.org/10.1002/qj.4001
  • [20] WANG Q., WANG W., WU M.G., et al., Adaptive information-fusion algorithm of DST and DSmT, Ordnance Industry Automation 30, 2011: 41-43. https://10.3969/j.issn.1006-1576.2011.02.012
  • [21] HUANG G.X., YANG Z., ZHANG Y., PENG H., WANG J., Particle filter based optimization scheme for trajectory design and resource allocation of UAV-enabled WPCN system, Physical Communication 47, 2021: 101392. https://doi.org/10.1016/j.phycom.2021.101392
  • [22] LI X.D., PAN J.D., DEZERT J., A target recognition algorithm for sequential aircraft based on DSmT and HMM, Acta Automatica Sinica 40, 2014: 2862⁃2876.
  • [23] SMARANDACHE F., DEZERT J., Advances and Applications of DSmT for Information Fusion-Collected Works, Vol. 3, Rehoboth, American Research Press, 2009: 10-26.
  • [24] ZHANG S., ZHANG M., CHI G.T., The science and technology evaluation model based on entropy weight and empirical research during the 10th five-year of China, Chinese Journal of Management 7, 2010: 34-42.
  • [25] DENG H.L., DAI D., LI S.W., Comprehensive operation risk evaluation of overhead transmission line based on hierarchical analysis-entropy weight method, Power System Protection and Control 45(1), 2017: 28-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a40d0f2-3b8e-46b8-941e-42a45497c8d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.