PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical self-phase modulation using a new photonic crystal coupled-cavity waveguide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, self-phase modulation of an optical pulse using a new photonic crystal coupled-cavity waveguide is simulated and analyzed. The structure of the new coupled-cavity waveguide is introduced and its advantage over the previous type of coupled-cavity waveguide is discussed. In order to obtain a high group index over a large bandwidth and benefit from the slow light phenomenon, the group index and group velocity dispersion parameter curves of the guided mode are calculated. Finally, the transient simulation of the structure is performed using a finite-difference time-domain method. The calculated required length of the coupled-cavity waveguide for a maximum phase shift of π is about 31 μm. Spectral broadening of the optical pulse as a result of self-phase modulation is also presented and discussed.
Czasopismo
Rocznik
Strony
29--38
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
  • Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
autor
  • Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
Bibliografia
  • [1] YULAN FU, XIAOYONG HU, QIHUANG GONG, Silicon photonic crystal all-optical logic gates, Physics Letters A 377(3–4), 2013, pp. 329–333.
  • [2] WEN-PIAO LIN, YU-FANG HSU, HAN-LUNG KUO, Design of optical NOR logic gates using two dimension photonic crystals, American Journal of Modern Physics 2(3), 2013, pp. 144–147.
  • [3] ARKHIPKIN V.G., MYSLIVETS S.A., All-optical switching in a photonic crystal with a defect containing an N-type four-level atomic system, Physical Review A 86, 2012, article 063816.
  • [4] NOZAKI K., TANABE T., SHINYA A., MATSUO S., SATO T., TANIYAMA H., NOTOMI M., Sub-femtojoule all-optical switching using a photonic-crystal nanocavity, Nature Photonics 4(7), 2010, pp. 477–483.
  • [5] HUA LU, XUEMING LIU, LEIRAN WANG, YONGKANG GONG, DONG MAO, Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator, Optics Express 19(4), 2011, pp. 2910–2915.
  • [6] LUKIN M.D., IMAMOGLU A., Controlling photons using electromagnetically induced transparency, Nature 413(6853), 2001, pp. 273–276.
  • [7] BIGELOW M.S., LEPESHKIN N.N., BOYD R.W., Observation of ultraslow light propagation in a ruby crystal at room temperature, Physical Review Letters 90, 2003, article 113903.
  • [8] DAQUAN YANG, XUEYING WANG, HUIPING TIAN, YUEFENG JI, Electro-optic modulation property of slow light in coupled photonic crystal resonator arrays, Optica Applicata 41(3), 2011, pp. 753–763.
  • [9] KRAUSS T.F., Slow light in photonic crystal waveguides, Journal of Physics D: Applied Physics 40(9), 2007, pp. 2666–2670.
  • [10] BABA T., Slow light in photonic crystals, Nature Photonics 2(8), 2008, pp. 465–473.
  • [11] JUNTAO LI, WHITE T.P., O’FAOLAIN L., GOMEZ-IGLESIAS A., KRAUSS T.F., Systematic design of flat band slow light in photonic crystal waveguides, Optics Express 16(9), 2008, pp. 6227–6232.
  • [12] KUBO S., MORI D., BABA T., Low-group-velocity and low-dispersion slow light in silicon photonic crystal waveguides, Optics Letters 32(20), 2007, pp. 2981–2983.
  • [13] EBNALI-HEIDARI M., GRILLET C., MONAT C., EGGLETON B.J., Dispersion engineering of slow light photonic crystal waveguides using mivrofluidic infiltration, Optics Express 17(3), 2009, pp. 1628–1635.
  • [14] MATSUDA N., KATO T., HARADA K., TAKESUE H., KURAMOCHI E., TANIYAMA H., NOTOMI M., Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide, Optics Express 19(21), 2011, pp. 19861–19874.
  • [15] ÜSTÜN K., KURT H., Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Optics Express 18(20), 2010, pp. 21155–21161.
  • [16] SOLJAČIĆ M., JOHNSON S.G., FAN S., IBANESCU M., IPPEN E., JOANNOPOULOS J.D., Photonic-crystal slow-light enhancement of nonlinear phase sensitivity, Journal of the Optical Society of America B 19(9), 2002, pp. 2052–2059.
  • [17] SOLJAČIĆ M., JOANNOPOULOS J.D., Enhancement of nonlinear effects using photonic crystals, Nature Materials 3(4), 2004, pp. 211–219.
  • [18] YARIV A., YONG XU, LEE R.K., SCHERER A., Coupled-resonator optical waveguide: a proposal and analysis, Optics Letters 24(11), 1999, pp. 711–713.
  • [19] MONAT C., CORCORAN B., PUDO D., EBNALI-HEIDARI M., GRILLET C., PELUSI M.D., MOSS D.J., EGGLETON B.J., WHITE T.P., O’FAOLAIN L., KRAUSS T.F., Slow light enhanced nonlinear optics in silicon photonic crystal waveguides, IEEE Journal of Selected Topics in Quantum Electronics 16(1), 2010, pp. 344–356.
  • [20] RAN HAO, CASSAN E., KURT H., LE ROUX X., MARRIS-MORINI D., VIVIEN L., HUAMING WU, ZHIPING ZHOU, XINLIANG ZHANG, Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion, Optics Express 18(6), 2010, pp. 5942–5950
  • [21] FUJISAWA T., KOSHIBA M., Finite-element modeling of nonlinear Mach–Zehnder interferometers based on photonic-crystal waveguides for all-optical signal processing, Journal of Lightwave Technology 24(1), 2006, pp. 617–623.
  • [22] BOYD R.W., Nonlinear Optics, 2nd Ed., Academic Press, New York, 2003. Received September 16, 2013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a3b26be-8625-4e38-a32d-8c324d17c575
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.