PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research on the strength distribution of brittle spheres under compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The strength of a particle is one of the most crucial characteristics within a comminution process due to the mechanical stresses experienced by each particle. In this study, the K9 glass spheres and ceramic spheres were subjected to a breakage test. The test includes the breakage of up to 240 particles under compression to obtain the distribution of the breakage probability depending on the crushing force and breakage energy. The breakage test was conducted for five particle size fractions from each individual material. Thus obtained 10 crushing force distributions and corresponding 10 breakage energy distributions were fitted with lognormal distribution function. The parameters in the lognormal were analyzed including the effect of the material and particle size. Following this, the relationship between the crushing force and breakage energy was analyzed based on the Hertzian elastic contacts model and Tomas’s elastic-plastic contact model, respectively. Additionally, particle strength in terms of crushing force and breakage energy were compared and found to be size dependent. Finally, a simple transformation algorithm of distributions is developed. According to this algorithm the crushing force distribution can be transformed into breakage energy distribution and vice versa. The findings facilitate a better understanding of the particle strength distribution under compression and will help to improve the comminution process design, control and optimization.
Rocznik
Strony
58--69
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • China University of Mining and Technology Beijing, School of Chemical and Environmental Engineering, Beijing, 100083, China
autor
  • China University of Mining and Technology Beijing, School of Chemical and Environmental Engineering, Beijing, 100083, China
autor
  • China University of Mining and Technology Beijing, School of Chemical and Environmental Engineering, Beijing, 100083, China
  • Shenhua Ningxia Coal Industry Group CO., LTD Taixi CPP, Ningxia Shi Zuishan 753000, China
autor
  • Shenhua Ningxia Coal Industry Group CO., LTD Taixi CPP, Ningxia Shi Zuishan 753000, China
Bibliografia
  • WU, S.Z., CHAU, K.T., YU, T.X., 2004. Crushing and fragmentation of brittle spheres under double impact test. Powder Technology, 143-144, 41-55.
  • NADOLSKI, S., KLEIN, B., KUMAR, A., 2014. An energy benchmarking model for mineral comminution. Minerals Engineering, 65, 178-186.
  • MARTINS, S., 2016. Size-energy relationship in comminution incorporating scaling laws and heat. International Journal of Mineral Processing, 153, 29-43,
  • SHI, F.N., 2016. A review of the applications of the JK size-dependent breakage model Part 2: Assessment of material strength and energy requirement in size reduction. International Journal of Mineral Processing, 157, 36-45,
  • SHI, F.N., KOJOVIC, T., 2007. Validation of a model for impact breakage incorporating particle size effect. International Journal of Mineral Processing, 82, 156-163.
  • TROMANS, D., 2008. Mineral comminution: Energy efficiency considerations, Minerals Engineering, 21, 613-620.
  • FUERSTENAU, D.W., ABOUZEID, A.Z.M., 2002. The energy efficiency of ball milling in comminution. International Journal of Mineral Processing, 67, 161-185.
  • VOGEL, L., PEUKERT, W., 2003. Breakage behaviour of different materials-construction of a mastercurve for the breakage probability. Powder Technology, 129, 101-110.
  • ZHANG, Q.B., ZHAO, J., 2014. A Review of Dynamic Experimental Techniques and Mechanical Behavior of Rock Materials. Rock Mechanics & Rock Engineering, 47(4), 1411-1478.
  • GONG, D.Z., NADOLSKI, S., SUN, C.B., 2018. The effect of strain rate on particle breakage characteristics. Powder Technology, 339, 595-605.
  • TAVARES, L.M., KING, R.P., 1998. Single-particle fracture under impact loading. International Journal of Mineral Processing, 54, 1-28.
  • LIBURKIN, R., PORTNIKOV, D., KALMAN, H., 2015. Comparing particle breakage in an uniaxial confined compression test to single particle crush tests-model and experimental results. Powder Technology, 284, 344-354.
  • CHAU, K.T., WEI, X.X., WONG, R.H.C., 2000. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses. Mechanics of materials, 32(9), 543-554.
  • CHAUDHRI, M.M., 2004. Impact breakage of semi-brittle spheres. Powder Technology. 143, 31-40.
  • HUANG, J., XU, S., YI, H., 2014. Size effect on the compression breakage strengths of glass particles. Powder Technology, 268, 86-94.
  • PORTNIKOV, D., KALMAN, H., 2014. Determination of elastic properties of particles using single particle compression test, Powder Technology, 268, 244-252.
  • AMAN, S., TOMAS, J., KALMAN, H., 2010. Breakage probability of irregularly shaped particles. Chemical Engineering Science, 65, 1503–1512.
  • ROZENBLAT, Y., PORTNIKOV, D., LEVY, A., 2010. Strength distribution of particles under compression. Powder Technology, 208, 215-224.
  • GUNDEPUDI, M.K., SANKAR, B.V., MECHOLSKY, J.J., 1997. Stress analysis of brittle spheres under multiaxial loading. Powder Technology, 94, 153–161.
  • COUROYER, C., GHADIRI, M., BRUNARD, N., 2003. Weibull analysis of quasi-static crushing strength of catalyst particles. Chemical Engineering Research & Design, 81(8), 953-962.
  • WONG, T.F., WONG, R.H.C, CHAU, K.T., 2005. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mechanics of Materials, 38(7), 664-681.
  • SUN, H.Q., ZENG, Y.W., YE Y., 2020. Abnormal size effect of particle breakage probability under repeated impacts. Powder Technology, 363, 629–641.
  • TAVARES, L. M., ALMEIDA, R.F.D., 2020. Breakage of green iron ore pellets. Powder Technology, 366, 497-507.
  • JOHNSON, K.L., 1985. Contact Mechanics, Cambridge University Press, Cambridge.
  • TOMAS, J., 2000. Particle adhesion fundamentals and bulk powder consolidation, Kona Powder & Particle Journal, 18, 157-169.
  • ANTONYUK, S., HEINRICH, S., TOMAS, J., 2010. Energy absorption during compression and impact of dry elastic–plastic spherical granules. Granular Matter, 12(1), 15-47.
  • SUN, H.Q., ZENG, Y.W., REN, S.L., 2019. Breakage probability of marble spheres under normal, repeated impacts. International Journal of Impact Engineering, 130, 68-78.
  • RUMPF, H., 1973. Physical aspects of comminution and new formation of law of comminution. Power Technology, 7, 145–159.
  • HIRAMATSU, Y., OKA, Y., 1966. Determination of the tensile strength of rock by a compression test of an irregular test piece. International Journal of Rock Mechanics & Mining ences & Geomechanics Abstracts, 3(2), 89-90.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a37ff70-2bb8-4790-8bdf-209931b7fcd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.