PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selected static characteristics of a parallel active power filter with feedback from the supply voltage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents selected static characteristics of a parallel active filter with voltage control in the supply line (VPAPF – Voltage-controlled Active Power Filter) as a function of parameters of the supply network. The tests were done on the basis of a simulation model of the supply network and an appropriate compensator. The test results showed that VPAPFs are most suitable for operation in weak networks, maintaining an almost constant level of voltage distortion, regardless of the value of the network impedance. In addition, the influence of the parameter G corresponding to the conductance value suppressing higher harmonics of the network voltage on the operation of the active power filter was determined.
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., wz.
Twórcy
autor
  • Institute of Electrical Engineering, Bydgoszcz University of Science and Technology Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz
autor
  • Institute of Electrical Engineering, Bydgoszcz University of Science and Technology Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz
Bibliografia
  • [1] Akagi H., Watanabe E.H., Aredas M., Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press & Wiley-Interscience A John Wiley & Sons Inc., ISBN: 978-0-470-10761-4 (2007).
  • [2] Strzelecki R., Supronowicz H., Harmonic Filtration in AC Power Grids, Adam Marszalek Publishing House (in Polish), Torun, ISBN: 53-7174-280-0 (1999).
  • [3] Routimo M., Developing a Voltage-Source Shunt Active Power Filter for Improving Power Quality, Tampereen teknillinen yliopisto/Tempere University of Technology, ISBN: 978-952-15-2083-3, E-ISBN: 978-952-15-2117-1, ISSN: 1459-2045 (2008).
  • [4] Adrikowski T., Buła D., Dębowski K., Maciążek M., Pasko M., Analysis of selected properties of active power filters, Silesian University of Technology Publishing House (in Polish), Gliwice, ISBN: 978-83-7335-791-4 (2011).
  • [5] Zygmanowski M., Comparative analysis of the properties of selected power electronic converters intended for electrical power conditioning systems, PhD Thesis (in Polish), Silesian University of Technology, Electrical Department, Gliwice (2009).
  • [6] Buła D., Hybrid Active Power Filters, PhD Thesis (in Polish), Silesian University of Technology, Electrical Department, Institute of Electrical Engineering and Computer Science, Gliwice (2011).
  • [7] Akagi H., Modern active filters and traditional passive filters, Technical Sciences: Bulletin of the Polish Academy of Sciences, vol. 54, iss. 3, ISSN: 0239-7528, e-ISSN: 2300-1917 (2006).
  • [8] Ozdemir E., Kale M., Ozdemir S., Active Power Filter for Power Compensation Under Non-Ideal Mains Voltages, Electric Power Systems Research, vol. 74, iss. 3, ISSN: 0378-7796 (2005).
  • [9] Ucar M., Ozdemir E., Kale M., An analysis of three-phase four-wire active power filter for harmonic elimination reactive power compensation and load balancing under nonideal mains voltage, IEEE 35th Annual Power Electronics Specialists Conference, PESC 04, ISBN: 0-7803-8399-0, ISSN: 0275-9306 (2004), DOI: 10.1109/PESC.2004.1355329.
  • [10] Tian H., Li Y.-W., Output Current Control for Grid Interfacing VSI under Low Switching Frequency and Distorted Grid, Energy Conversion Congress and Exposition (2015), DOI: 10.1109/ECCE. 2015.7310568.
  • [11] Grugel P., Strzelecki R., Kłosowski Z., Comparative analysis of parallel power active filters – typical (current-based) and voltage-based type, working in networks with different topologies, Przegląd Elektrotechniczny (in Polish), no. 7/2015, ISSN: 0033-2097, E-ISSN: 2449-9544, Sigma Not Publishing House, Warszawa (2015), DOI: 10.15199/48.2015.07.32.
  • [12] Grugel P., The influence of the low-voltage network equivalent impedance on the operation of parallel active power filters controlled by two different control algorithms(in Polish), Przegląd Elektrotechniczny, Sigma Not Publishing House, Warszawa, no. 10/2016, ISSN: 0033-2097, E-ISSN: 2449-9544 (2016), DOI: 10.15199/48.2016.10.47.
  • [13] Grugel P., Strzelecka N., The comparative analysis of Parallel Active Power Filters – typical and voltage-based – in various operating conditions, 9th International Conference on Compatibility and Power Electronics, CPE 2015, ISSN: 2166-9538 (2015), DOI: 10.1109/CPE.2015.7231062.
  • [14] Grugel P., Stability analysis of Parallel Active Power Filter operating on the basis of network voltage distortion, 10th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2016, e-ISSN: 2166-9546 (2016), DOI: 10.1109/CPE.2016.7544192.
  • [15] Lee T.L., Li J.C., Cheng P.T., Discrete Frequency Tuning Active Filter for Power System Harmonics, IEEE Transactions on Power Electronics, vol. 24, iss. 5, ISSN: 0885-8993 (2009), DOI: 10.1109/TPEL.2009.2013863.
  • [16] Huan Y.Z., Du Y., A Novel Shunt Active Power Filter Based on Voltage Detection for Harmonic Voltage Mitigation, 42nd IAS Annual Meeting of the Industry Applications Conference, ISSN: 0197-2618 (2007), DOI: 10.1109/07IAS.2007.249.
  • [17] Lee T.L., Cheng P.T., A Harmonic Damping Method for a Loop Power System, IAS 2008, ISBN: 978-1- 4244-2278-4, E-ISBN: 978-1-4244-2279-1, ISSN: 0197-2618 (2008), DOI: 10.1109/08IAS.2008.269.
  • [18] Kuo S.-Y., Lee T.-L., Chen Ch.-A., Cheng P.-T., Pan Ch.-T., Distributed Active Filters for Harmonic Resonance Suppression in Industrial Facilities, Power Conversion Conference – Nagoya, PCC 2007, ISBN: 1-4244-0843-1, E-ISBN: 1-4244-0844-X (2007), DOI: 10.1109/PCCON.2007.372997.
  • [19] Lee T.L., Li J.C., Cheng P.T., A Discrete Frequency Tuning Active Filter for Power System Harmonics, Power Electronics Specialists Conference, PESC 2008, ISBN: 978-1-4244-1668-4 (2008), DOI: 10.1109/PESC.2008.4591925.
  • [20] Lee T.-L., Hu S.-H., Design of Resonant Current Regulation for Discrete Frequency Tuning Active Filter, The 2010 International Power Electronics Conference, IPEC 2010, ISBN: 978-1-4244-5394-8, E-ISBN: 978-1-4244-5393-1, CD-ISBN: 978-1-4244-5395-5 (2010), DOI: 10.1109/IPEC.2010.5543132.
  • [21] Ferrari M., Evaluation of Harmonic Detection Algorithms for Active Power Filter based on Voltage and Current Detection Methods, 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2018, ISBN: 978-1-5386-6706-4, E-ISBN: 978-1-5386-6705-7, USB-ISBN: 978-1-5386-6704-0, E-ISSN: 2329-5767 (2018), DOI: 10.1109/PEDG.2018.8447737.
  • [22] Kumar U., Kumar S., DC-Link Voltage Balancing with Fuzzy Logic Controller for Shunt Active Power Filter of More Electrical Aircraft, IEEE First International Conference on Smart Technologies for Power, Energy and Control, STPEC 2020, ISBN: 978-1-7281-8874-4, E-ISBN: 978-1-7281-8873-7, USB-ISBN: 978-1-7281-8872-0 (2020), DOI: 10.1109/STPEC49749.2020.9297762.
  • [23] Kumar U., Kumar S., Performance Evaluation of Shunt Active Power Filter for Aircraft System, International Conference on Electrical and Electronics Engineering, ICE3 2020, ISBN: 978-1-7281- 5847-1, E-ISBN: 978-1-7281-5846-4, USB-ISBN: 978-1-7281-5845-7 (2020), DOI: 10.1109/ICE348803.2020.9122873.
  • [24] Akagi H., Control Strategy and Site Selection of a Shunt Active Filter for Damping of Harmonic propagation in Power Distribution Systems, IEEE Transactions on Power Delivery, vol. 12, iss. 1, ISSN: 0885-8977, E-ISSN: 1937-4208 (1997), DOI: 10.1109/61.568259.
  • [25] Szromba A., Mysiński W., Voltage-source-inverter-based conductance-signal-controlled shunt active power filter, 19th European Conference on Power Electronics and Applications, EPE 2017 ECCE Europe, ISBN: 978-1-5386-0530-1, E-ISBN: 978-90-75815-27-6, USB-ISBN: 978-90-75815-26-9 (2017), DOI: 10.23919/EPE17ECCEEurope.2017.8099383.
  • [26] Suryawanshi S., Mahajan S.K., Reduction of Various Harmonic Resonances in a Power Distribution System by Current Control Method, 4th International Conference on Inventive Systems and Control, ICISC 2020, ISBN: 978-1-7281-2814-6, E-ISBN: 978-1-7281-2813-9 (2020), DOI: 10.1109/ICISC47916.2020.9171126.
  • [27] Iturra R.G., Cruse M., Mutze K., Thiemann P., Dresely C., Power Balance of Shunt Active Power Filter based on Voltage Detection: a Harmonic Power Recycler Device, IEEE Applied Power Electronics Conference and Exposition, APEC 2019, ISBN: 978-1-5386-8331-6, E-ISBN: 978-1-5386-8330-9, USB-ISBN: 978-1-5386-8329-3 (2019), DOI: 10.1109/APEC.2019.8722037.
  • [28] Ren B., Wu D., Zhang R., Sun X., Zhang Q., An Adaptive Droop Control and Virtual Harmonic Resistance Method in Islanding Microgrid, 13th IEEE Conference on Industrial Electronics and Applications, ICIEA 2018, ISBN: 978-1-5386-3759-3, E-ISBN: 978-1-5386-3758-6, USB-ISBN: 978-1-5386-3757-9, E-ISSN: 2158-2297 (2018), DOI: 10.1109/ICIEA.2018.8398091.
  • [29] Iturra R.G., Thiemann P., Comparative Evaluation of Control Strategies for Shunt Active Power Filters in Industrial Power Systems, PESS + PELSS 2022: Power and Energy Student Summit, ISBN:978-3-8007-6013-8 (2022).
  • [30] Khan I., Vijay A.S., Doolla S., Nonlinear Load Harmonic Mitigation Strategies in Microgrids: State of the Art, IEEE Systems Journal, vol. 16, iss. 3, ISSN: 1932-8184, E-ISSN: 1937-9234, CD-ISSN: 2373-7816 (2022), DOI: 10.1109/JSYST.2021.3130612.
  • [31] Li Y., He J., Liu Y., Hybrid APF Background Harmonic Voltage Damping Control Method, IEEE 9th International Power Electronics and Motion Control Conference, IPEMC 2020 – ECCE 2020 Asia, ISBN: 978-1-7281-5302-5, E-ISBN: 978-1-7281-5301-8 (2020), DOI: 10.1109/IPEMCECCEAsia48364.2020.9368244.
  • [32] Lei Y., Zhao Z., He F., Lu S., Yin L., An improved virtual resistance damping method for grid-connected inverters with LCL filters, IEEE Energy Conversion Congress and Exposition, ISBN:978-1-4577-0542-7, E-ISBN:978-1-4577-0541-0, CD-ISBN: 978-1-4577-0540-3, ISSN: 2329-3721, E-ISSN: 2329-3748 (2011), DOI: 10.1109/ECCE.2011.6064287.
  • [33] Sato Y., Kawase T., Akiyama M., Kataoka T., A control strategy for general-purpose active filters based on voltage detection, IEEE Transactions on Industry Applications, vol. 36, iss. 5, ISSN: 0093-9994, E-ISSN: 1939-9367 (2000), DOI: 10.1109/28.871290.
  • [34] Hoevenaars A., Farbis M., McGraw M., Active Harmonic Mitigation – What the Manufacturers don’t tell you, IEEE Industry Applications Magazine, vol. 26, iss. 5, ISSN: 1077-2618, E-ISSN: 1558-0598 (2020), DOI: 10.1109/MIAS.2020.2982484.
  • [35] https://sklep.pkn.pl/pn-en-50160-2010p.html – PN-EN 50160 – Voltage Characteristics of Public Distribution Systems, ©Polish Committee for Standardization (in Polish), accessed June 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a35842e-e83a-4124-b447-1d901bcbce5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.