PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Capture efficiency of magnetically labeled particles traveling through an intracranial aneurysm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used.
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Universidad Nacional de Colombia, Sede Medellin, COLOMBIA
autor
  • Department of Mechanical Engineering, Universidad Nacional de Colombia, Sede Medellin, COLOMBIA
  • Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia Sede Bogota, COLOMBIA
Bibliografia
  • [1] Cai W., Hu C., Gong J. and Lan Q. (2018): Anterior communicating artery aneurysm morphology and the risk of rupture.– World Neurosurgery, vol.109, pp.119-126.
  • [2] Brain Aneurysm Foundation (2018): Brain aneurysm statistics and facts – brain aneurysm foundation.– available online: http://www.bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/.
  • [3] Daou B. and Jabbour P. (2016): Flow diversion for treating middle cerebral artery aneurysms.– World Neurosurgery, vol.90, pp.627-629.
  • [4] Kutikhin A.G., Sinitsky M.Y., Yuzhalin A.E. and Velikanova E.A. (2018): Shear stress: an essential driver of endothelial progenitor cells.– J. Mol. Cell. Cardiol., vol.118, pp.46-69.
  • [5] Marosfoi M., Langan E.T., Strittmatter L., van der Marel K., Vedantham S., Arends J., Lylyk I.R., Loganathan S., Hendricks G.M., Szikora I., Puri A.S., Wakhloo A.K. and Gounis M.J. (2016): In situ tissue engineering: endothelial growth patterns as a function of flow diverter design.– J. Neurointerv. Surg, vol.34, No.1, pp.16-17.
  • [6] Allain J.P., Reece L., Yang Z., Armonda R., Kempaiah R. and Tigno T. (2013): System and stent for repairing endovascular defects and methods of use.– WO2013052934 A3, CA2851264A1, EP2763710A2, EP2763710A4, US20140277354, WO2013052934A2, p.30.
  • [7] Connell J.J., Patrick P.S., Yu Y., Lythgoe M.F. and Kalber T.L. (2015): Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.– Regen. Med., vol.10, No.6, pp.757-772.
  • [8] Calero M., Gutiérrez L., Salas G., Luengo Y., Lázaro A., Acedo P., Morales P., Miranda R. and Villanueva A. (2014): Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications.– Nanomedicine Nanotechnology, Biol. Med., vol.10, No.4, pp.733-743.
  • [9] Arias S.L., Shetty A.R., Senpan A., Echeverry-Rendón M., Reece L.M. and Allain J.P. (2016): Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles.– J. Vis. Exp., No.111, doi:10.3791/52951.
  • [10] Gregory-Evans K., Bashar A. E. and Laver C. (2013): Use of magnetism to enhance cell transplantation success in regenerative medicine.– Regen. Med., vol.8, No.1, pp.1-3.
  • [11] Sharma S., Singh U. and Katiyar V.K. (2015): Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube.– J. Magn. Magn. Mater., vol.377, pp.395–401.
  • [12] Songsaeng D., Geibprasert S., ter Brugge K. G., Willinsky R., Tymianski M. and Krings T. (2011): Impact of individual intracranial arterial aneurysm morphology on initial obliteration and recurrence rates of endovascular treatments: a multivariate analysis.– J. Neurosurg., vol.114, No.4, pp.994-1002.
  • [13] Selimovic A., Ventikos Y. and Watton P. N. (2014): Modelling the evolution of cerebral aneurysms: biomechanics, mechanobiology and multiscale modelling.– Procedia IUTAM, vol.10, pp.396-409.
  • [14] Lunnoo T. and Puangmali T. (2015): Capture efficiency of biocompatible magnetic nanoparticles in arterial flow: a computer simulation for magnetic drug targeting.– Nanoscale Res. Lett., vol.10, No.1., DOI: 10.1186/s11671-015-1127-5.
  • [15] Bose S. and Banerjee M. (2015): Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling.– J. Magn. Magn. Mater., vol.385, pp.32-46.
  • [16] Sharma S., Singh U. and Katiyar V.K. (2015): Modeling and in vitro study on capture efficiency of magnetic nanoparticles transported in an implant assisted cylindrical tube under magnetic field.– Microfluid. Nanofluidics, vol.19, pp.1061-1070.
  • [17] Mirzababaei S.N., Gorji T.B., Baou M., Gorji-Bandpy M. and Fatouraee N. (2017): Investigation of magnetic nanoparticle targeting in a simplified model of small vessel aneurysm.– J. Magn. Magn. Mater., vol.426, pp.126-131.
  • [18] Overweg J. (2008): MRI main field magnets.– Phys, vol.38, pp.25-63.
  • [19] Larsen K., Cheng C., Tempel D., Parker S., Yazdani S., den Dekker V.K., Houtgraaf J.H., de Jong R., Swager-ten Hoor S., Ligtenberg E., Hanson S.R., Rowland S., Kolodgie F., Serruys P.W., Virmani R. and Duckers H.J. (2012): Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model.– Eur. Heart J., vol.33, No.1, pp.120-128.
  • [20] Bose S. and Banerjee M. (2015): Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel.– J. Magn. Magn. Mater., vol.374, pp.611-623.
  • [21] Pourmehran O., Rahimi-Gorji M., Gorji-Bandpy M. and Gorji T.B. (2015): Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking.– J. Magn. Magn. Mater., vol.393, pp.380-393.
  • [22] Sharma S. , Katiyar V.K. and Singh U. (2015): Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field.– J. Magn. Magn. Mater., vol.379, pp.102-107.
  • [23] Adamo R.F., Fishbein I., Zhang K., Wen J., Levy R.J., Alferiev I.S., Chorny M. (2016): Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries.– J. Control. Release, vol.222, pp.169-175.
  • [24] Majee S. and Shit G.C. (2017): Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment.– J. Magn. Magn. Mater., vol.424, pp.137-147.
  • [25] Haghdel M. , Kamali R. , Haghdel A. and Mansoori Z. (2017): Effects of non-Newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery.– Nanomedicine Journal, vol.4, No.2, pp.89-97.
  • [26] Valencia A. , Morales H. , Rivera R. , Bravo E. and Galvez M. (2008): Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index.– Med. Eng. Phys., vol.30, No.3, pp.329-40.
  • [27] Boldock L. (2017): The Influence of Stent Geometry on Haemodynamics and Endothelialisation.– PhD thesis, The University of Sheffield, uk.bl.ethos.733601.
  • [28] Furlani E.J. and Furlani E.P. (2007): A model for predicting magnetic targeting of multifunctional particles in the microvasculature.– J. Magn. Magn. Mater., vol.312, No.1, pp.187-193.
  • [29] B.D. Plouffe, S.K. Murthy, and L.H. Lewis,(2015): Fundamentals and application of magnetic particles in cell isolation and enrichment: A review.– Reports Prog. Phys., vol.78, No.1, p.016601, doi:10.1088/0034-4885/78/1/016601.
  • [30] Xu J, Wu Z., Yu Y., Lv N., Wang S., Karmonik C., Liu J.-M. and Huang Q. (2015): Combined effects of flow diverting strategies and parent artery curvature on aneurysmal hemodynamics: a CFD study.– PLoS One, vol.10, No.9, p.e0138648.
  • [31] Bouillot P., Brina O., Ouared R., Yilmaz H., Lovblad K.-O., Farhat M. and Pereira V.M. (2016): Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents.– J. Neurointerv. Surg., vol.8, No.3, pp.309-15.
  • [32] ANSYS Inc. (2013): ANSYS® Academic Research Mechanical.– ANSYS, Inc. Private communications.
  • [33] Zarrinkoob L., Ambarki K., Wåhlin A., Birgander R., Eklund A. and Malm J. (2015): Blood flow distribution in cerebral arteries.– J. Cereb. Blood Flow Metab., vol.35, No.4, pp.648-654.
  • [34] Lopez Ramirez E. (2011): Numerical Investigation of Blood Flow in Stented Intracranial Aneurysms Models.– PhD. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
  • [35] Fluent A. (2001): Chapter 19. Discrete Phase Models.– FLUENT User’s Guide. pp.1-170.
  • [36] Minitab (2018): Minitab.– Pennsylvania.
  • [37] Wang S., Zhou Y., Tan J., Xu J., Yang J. and Liu Y. (2014): Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field.– Comput. Mech., vol.53, No.3, pp.403-412.
  • [38] Cherry E.M. and Eaton J.K. (2014): A comprehensive model of magnetic particle motion during magnetic drug targeting.– Int. J. Multiph. Flow, vol.59, pp.173-185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a332753-9e87-4f56-ac0f-dc04c3257626
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.