
Opuscula Math. 41, no. 6 (2021), 747–754
https://doi.org/10.7494/OpMath.2021.41.6.747 Opuscula Mathematica

GENERALIZED POWERS AND MEASURES

Zbigniew Burdak, Marek Kosiek, Patryk Pagacz, Krzysztof Rudol,
and Marek Słociński

Communicated by Alexander Gomilko

Abstract. Using the winding of measures on torus in “rational directions” special classes of
unitary operators and pairs of isometries are defined. This provides nontrivial examples
of generalized powers. Operators related to winding Szegö-singular measures are shown to
have specific properties of their invariant subspaces.
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1. INTRODUCTION

In the “one-dimensional” case of the disc algebra A(D) the normalized Lebesgue
measure m is the unique representing measure on the unit circle T for the evaluation
at 0 functional. The structure of “two-dimensional” representing measures for A(D2)
is quite complicated. Its better understanding plays essential role in studying Banach
algebras of analytic functions of many variables.

In order to understand the rich family of all representing measures on the torus T2

a special class of measures Jpq(ν) was defined in [6]. Here by a representing measure
we mean a positive Borel measure µ such that u(0) =

∫
T2 u(z)dµ(z) for all functions

u analytic on the bidisc D2 and continuous on its closure. By B(T2) (respectively
by B(T)) we denote the corresponding sigma – algebra of Borel sets.

For any pair of relatively prime positive integers (p, q) a process of “winding
of m on the torus” yields a one-parameter family of measures ηw

pq, where w ∈ T
(i.e. w ∈ C, |w| = 1). Now this family is integrated with respect to a given probabilistic
Borel measure ν on T, yielding a representing measure µ = Jpq(ν) described below.
On the other hand, representing measures satisfying certain additional conditions are
shown to be decomposable as infinite sums of measures of this type.
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In this short note we study a related class of pairs (U1, U2) of unitary operators on
the space L2(µ) for such a measure µ = Jpq(ν). Their restriction to a certain invariant
subspace H is shown to be a pair of generalized powers (and compatible isometries)
in the sense of [1, 5]. On the other hand, compatible isometries are important due to
their relation with stochastic processes. More precisely, a two-dimensional stochastic
processes with a so-called half-plane past is compatible as a pair of isometries. The con-
sidered measures Jpq(ν) provide examples of generalized powers and of two-dimensional
stochastic processes as well. The examples are far more interesting than those previously
known which were uncorrelated pairs (a white noise) and pairs of powers of the same
unilateral shift. (The latter example was very close to the one dimensional case.)

We also consider the measures Jpq(ν) related to a special class of Szegö-singular
measures ν, obtaining some additional properties in this case.

2. “WINDING” MEASURES ON THE TORUS

Throughout this paper (p, q) will be a fixed pair of relatively prime positive integers.
For a complex number w ∈ T let w−1/p be the inverse to the principal value of its
p-th root. Then we have a family of measurable mappings φw

pq : T → T2 defined in [6]
for z ∈ T by

φw
pq(z) := (zp, w−1/pzq). (2.1)

These mappings pushforward the normalized Lebesgue measure m yielding the family
of Borel measures ηw

pq := φw
pq(m) on T2, so that

∫

T2

u dηw
pq =

∫

T

u ◦ φw
pq dm, u ∈ C(T2). (2.2)

Finally, for a probabilistic Borel measure ν on T let

µ := Jpq(ν) =
∫

ηw
pq dν(w).

This means that µ is a probabilistic measure on the torus T2 such that
∫

u dµ =
∫

T

( ∫

T2

u dηw
pq

)
dν(w), u ∈ C(T2). (2.3)

For any k, l ∈ Z, we have [6, Proposition 2.5]:

Proposition 2.1. The Fourier coefficient µ̂(k, l) :=
∫

z−k
1 z−l

2 dµ(z1, z2) equals zero
unless k = aq, l = −ap for some integer a ∈ Z . In the latter case µ̂(k, l) = ν̂(a).

Let Ui (i = 1, 2) denote the operator of multiplication by the variable zi on L2(µ),
where µ = Jpq(ν). Since |zi| = 1 on T2, the pair (U1, U2) consists of unitary operators,
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which clearly commute. Let E : B(T2) → L(L2(µ)) be its common spectral measure.
So for any Borel set σ ∈ B(T2) we have

⟨E(σ)f, g⟩ =
∫

σ

fḡ dµ, f, g ∈ L2(µ). (2.4)

Moreover,

⟨Uif, g⟩ =
〈( ∫

zi dE
)

f, g
〉

=
∫

zi d⟨E(·)f, g⟩ =
∫

zifḡ dµ, f, g ∈ L2(µ). (2.5)

Put
φpq(z, w) := φw

pq(z).

By (2.2), (2.3) and by Fubini’s Theorem we have for any bounded Borel function u
on T2 the equalities

∫
u dµ =

∫ (∫
u(λp, w−1/pλq) dm(λ)

)
dν(w)

=
∫ (∫

u(λp, w−1/pλq) dν(w)
)

dm(λ).
(2.6)

For σ ⊂ T, put
∆pq

σ := {(λp, w−1/pλq) : w ∈ σ, λ ∈ T}.

As a consequence of (2.1), for z = λ we can write the equations

z1 = λp, z2 = w−1/pλq.

Solving them we obtain
λ = z

1/p
1 , w = zq

1z−p
2 .

Define the mappings

Πpq : T2 ∋ (z1, z2) 7→ zq
1z−p

2 ∈ T, Λpq : T2 ∋ (z1, z2) 7→ z
1/p
1 ∈ T.

By (2.1), we have
φpq(Λpq(z1, z2), Πpq(z1, z2)) = (z1, z2).

Hence, Π−1
pq (σ) = ∆pq

σ .

3. A UNITARY OPERATOR ASSOCIATED WITH THE PAIR (U1, U2)

Applying our mapping Πpq to the pair (U1, U2) we obtain the unitary operator

U := (U∗
2 )pUq

1 . (3.1)

Although it depends on (p, q), we use here U to simplify the notation.
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Proposition 3.1. The spectral measure F of the above operator U is obtained from E
by the formula F : B(T) ∋ σ → E(Π−1

pq (σ)) ∈ L(L2(µ)).

Proof. Since (Πpq(U1, U2))a = Ua for a ∈ Z, by the Stone–Weierstrass theorem we have
∫

f ◦ Πpq dE = f(Πpq(U1, U2)) = f(U) =
∫

f dF

for all bounded Borel functions f on T. Applying this equality to an arbitrary charac-
teristic function χσ of a Borel set σ ⊂ T, we get

F (σ) =
∫

χσ ◦ Πpq dE =
∫

χΠ−1
pq (σ) dE = E(Π−1

pq (σ)).

A pair (V1, V2) of isometries is called compatible if projections onto the ranges
R(V m

1 ), R(V n
2 ) commute for all positive integers m, n (see [5]). Of course any pair

of commuting unitary operators is trivially compatible. Pairs of generalised powers
were defined in [1] where the definition provides a precise but also a little com-
plicated geometrical description. Fortunately, in the case of compatible pairs of
isometries, the results of [1] imply the following, more reader – friendly equivalent
definition: generalized powers are pairs of compatible unilateral shifts (V1, V2) satisfying
V k

1 = UV m
2 with some positive integers k, m and a unitary operator U commuting

with V1, V2.
By [6, Proposition 2.5 (i)], we have for a ∈ Z

∫
zaq

1 z−ap
2 dµ(z1, z2) =

∫
wa dν(w) (3.2)

and ∫
z−k

1 z−l
2 dµ(z1, z2) = 0

if (k, l) ̸= (aq, −ap) for all a ∈ Z. In particular, the monomials wk,l(z1, z2) := zk
1 zl

2
and zm

1 zn
2 will be orthogonal in L2(µ), if the difference (k − m, l − n) does not belong

to the subgroup Z · (q, −p) of Z2. If a subspace of L2(µ) contains the monomial
wk,l and is invariant under (U1, U2), it must contain also {wk+r,l+s : r, s ∈ Z+}.
If it reduces U , it has to contain {wk+aq,l−ap : a ∈ Z}.

Let us consider for n ∈ Z the following subspaces Hn, H of L2(µ):

Hn = span{zaq+r
1 z−ap+s

2 , a ∈ Z, nq ≤ r < (n + 1)q, 0 ≤ s < p},

H =
∞⊕

n=0
Hn.

Observe that

L2(µ) =
∞⊕

n=−∞
Hn (3.3)
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and

Hn =
p−1⊕

s=0

(n+1)q−1⊕

r=nq

Hrs, (3.4)

where Hrs := span{zaq+r
1 z−ap+s

2 , a ∈ Z}.
Corollary 3.2. The subspaces Hk (k ∈ Z) and H are reducing for U . Moreover H
is invariant for (U1, U2) and the restrictions (U1|H, U2|H) form a compatible pair of
generalized powers.
Proof. In view of the preceding remarks, it remains to show that (U1, U2) form
a compatible pair of isometries which means the commutativity of the projections:
P1,m onto the range of Um

1 with P2,n -onto R(Un
2 ). Let

A = {(aq + r, −ap + s) ∈ Z2 : a ∈ Z, r, s ∈ Z+},

so that H = span{zk
1 zl

2 : (k, l) ∈ A}. Also let us define two sets

A1,m := {(k + m, l) : (k, l) ∈ A} and A2,n := {(k, l + n) : (k, l) ∈ A}.

The range of Um
1 is spanned by {zk

1 zl
2 : (k, l) ∈ A1,m}, while R(Un

2 ) is spanned
by {zk

1 zl
2 : (k, l) ∈ A2,n}. These two sets A2,n, A1,m are saturated with respect to

the equivalence relation modulo subgroup {(aq, −ap) : a ∈ Z} of Z2, so is their
set-theoretical differences and intersection - which we denote

Bm,n := A2,n ∩ A1,m.

The monomials zk
1 zl

2 with (k, l) ∈ A1,m \ A2,n are orthogonal to those with
(k, l) ∈ Bm,n. Analogous orthogonality takes place for the monomials correspond-
ing to (k, l) ∈ A2,n \ A1,m and (k′, l′) ∈ Bm,n (and for (k′, l′) ∈ A1,m \ A2,n). The
subspaces of H spanned by such monomials are also orthogonal and from this one
can easily deduce that both P1,mP2,n and P2,nP1,m are equal to the projection onto
span{zk

1 zl
2 : (k, l) ∈ Bm,n}. Hence these projections commute.

4. UNITARY OPERATORS WITH CYCLIC VECTORS

The following property of unitary operators seems known, but uneasy to find in
the literature, so we include its proof for the sake of completeness.
Proposition 4.1. If a unitary operator on a Hilbert space has a cyclic vector, then
all its invariant subspaces are reducing.
Proof. Let U ∈ L(H) be an arbitrary unitary operator with a cyclic vector x0 ∈ H
and let H0 ⊂ H be reducing for U . Hence PH0 commutes with U and with the
polynomials φ(U). Now any vector y ∈ H0 can be approximated by φ(U)x0 for some
polynomial φ. Then PH0φ(U)x0 = φ(U)PH0x0 approximates PH0y = y.

Hence for any reducing subspace H0 for U the vector PH0x is cyclic for U |H0 .
In particular, if there is a U wandering vector y ∈ H, then H0 =

⊕
n∈Z CUny



752 Z. Burdak, M. Kosiek, P. Pagacz, K. Rudol, and M. Słociński

reduces U , so U |H0 has a cyclic vector. However, U |H0 is a bilateral shift of multiplicity
one, so it is equivalent to Mz ∈ L(L2(T)). If there is a cyclic vector f ∈ L2(T), then
Mf H2(T) = L2(T) which is impossible.

Suppose that U has a nontrivial invariant subspace H ′ which is nonreducing. Then
U |H′ has a nonzero unilateral shift part and consequently has a nonzero wandering
vector which leads to the contradiction.

5. SZEGÖ SINGULAR MEASURES

For any non-negative regular Borel measure η on Td, d = 1, 2 we denote by H2(η)
the closure in L2(η) of the algebra of all analytic polynomials (i.e. spanned by zk, resp.
by zk

1 zl
2, k, l ∈ Z+). We say that η is Szegö singular if H2(η) = L2(η). In the case of

the unit circle T we say that η is a Szegö measure, if for any ω ∈ B(T) the inclusion
χωL2(η) ⊂ H2(η) implies η(ω) = 0. For preliminaries on Szegö measures see [2–4].
By U we denote the unitary operator on L2(Jpq(ν)) defined in (3.1).
Theorem 5.1. If ν is Szegö singular measure, then every invariant for U subspace is
reducing.
Proof. Take an arbitrary ε > 0 and k ∈ N ∪ {0, −1}. Since ν is Szegö singular, we can
find a polynomial hk(w) divisible by wk+1 (i.e. with vanishing first k + 1 coefficients)
and such that ∫

|hk(w) − wk|2 dν(w) < ε. (5.1)

Using the equality

|hk(w) − wk|2 = (hk(w) − wk)(hk(w) − w−k)

and applying (3.2) to each monomial of its right hand side, by (5.1) we have
∫

|hk(z−q
1 zp

2) − z−kq
1 zkp

2 |2 dµ(z1, z2) < ε.

Since ε was arbitrary, we conclude that z−kq
1 zkp

2 ∈ H0. By induction also zaq
1 z−ap

2 ∈ H0
for a ∈ N. For r, s ∈ Z we have
∫

|(hk(z−q
1 zp

2) − z−kq
1 zkp

2 )zr
1zs

2|2 dµ(z1, z2) ≤
∫

|hk(z−q
1 zp

2) − z−kq
1 zkp

2 |2 dµ(z1, z2) < ε.

Since zr
1zs

2hk(z−q
1 zp

2) ∈ Hn, we conclude for any k ∈ N ∪ {0, −1} and n ≥ 0 that

zr−kq
1 zkp−s

2 ∈
∞∨

m=1
Um(zr−kq

1 zkp−s
2 ).

This implies that U |Hrs
n

has a cyclic vector. By Proposition 4.1, we conclude that
every invariant for U subspace H ′ ⊂ Hn is reducing. By (3.3), (3.4) and Corollary 3.2,
we obtain the desired conclusion.
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