PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected aspects of the choice of live steam pressure in PWR nuclear power plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In commercially available generation III and III+ PWR (pressurized water reactor) reactors, pressure of steam produced in steam generators varies in a relatively wide range from 5.7 to 7.8 MPa. Therefore, it is important to ask which value of steam pressure should be used for a specific unit, taking into account different location conditions, the size of the power system and conditions of operation with other sources of electricity generation. The paper analyzes the effect of steam pressure at the outlet of a steam generator on the performance of a PWR nuclear power plant by presenting changes in gross and net power and efficiency of the unit for steam pressures in the range of 6.8 to 7.8 MPa. In order to determine losses in the thermal system of the PWR power plant, in particular those caused by flow resistance and live steam throttling between the steam generator and the turbine inlet, results concerning entropy generation in the thermal system of the power plant have been presented. A model of a nuclear power plant was developed using the Ebsilon software and validated based on data concerning the Olkiluoto Unit 3 EPR (evolutionary power reactor) power plant. The calculations in the model were done for design conditions and for a constant thermal power of the steam generator. Under nominal conditions of the Olkiluoto Unit 3 EPR power unit, steam pressure is about 7.8 MPa and the steam dryness fraction is 0.997. The analysis indicates that in the assumed range of live steam pressure the gross power output and efficiency increase by 32 MW and 0.735 percentage point, respectively, and the net power output and efficiency increase by 27.8 MW and 0.638 percentage point, respectively. In the case of all types of commercially available PWR reactors, water pressure in the primary circuit is in the range of 15.5−16.0 MPa. For such pressure, reducing the live steam pressure leads to a reduction in the efficiency of the unit. Although a higher steam pressure increases the efficiency of the system, it is necessary to take into account the limitations resulting from technical and economic criteria as well as operating conditions of the primary circuit, including the necessary DNBR (departure from nucleate boiling ratio) margin. For the above reasons, increasing the live steam pressure above 7.8 MPa (the value used in EPR units that have already been completed) is unjustified, as it is associated with higher costs of the steam generator and the high-pressure part of the turbine.
Rocznik
Strony
85--109
Opis fizyczny
Bibliogr. 68 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warszawa, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warszawa, Poland
  • Framatome, 1 place Jean Millier, 92400, Courbevoie, Paris, France
autor
  • EDF, 19 rue Pierre Bourdeix, 69007, Lyon, France
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warszawa, Poland
Bibliografia
  • [1] In-Operation & Long-Term Shutdown Reactors. https://pris.iaea.org/PRIS/World Statistics/OperationalReactorsByType.aspx (accessed 5 Jan. 2022).
  • [2] Strupczewski A.: Market available nuclear reactors – comparison of their technical, ecological and economic advantages and disadvantages. Energetyka (2009), 499–506 (in Polish).
  • [3] Kubowski J.: Nuclear Power Plants (2nd Edn.). WNT, Warszawa 2014 (in Polish).
  • [4] Large Projects. https://www.framatome.com/EN/businessnews-136/framatomelarge-projects–management-and-execution-of-nuclear-reactor-new-buildprojects.html (accessed 5 Jan. 2022).
  • [5] AP1000 Pressurized Water Reactor. https://www.westinghousenuclear.com/newplants/ap1000-pwr (accessed 5 Jan. 2022).
  • [6] Modern Reactors of Russian Design. https://www.rosatom.ru/en/rosatom-group/ engineering-and-construction/modern-reactors-of-russian-design/ (accessed 5 Jan.2022).
  • [7] APR1400. https://www.kepco-enc.com/eng/contents.do?key=1533 (accessed 5 Jan. 2022).
  • [8] Welcome to CANTEACH. https://canteach.candu.org/Pages/Welcome.aspx (accessed 5 Jan. 2022).
  • [9] Review of design approaches of advanced pressurized LWRs. https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/031/27031989.pdf?r=1 (accessed 5 Jan. 2022).
  • [10] EPR Design Description. https://www.nrc.gov/docs/ML0522/ML052280170.pdf (accessed 5 Jan. 2022).
  • [11] Laskowski R., Lewandowski J.: A simplified mathematical model of a U-tube steam generator under variable load conditions. Arch. Thermodyn. 34(2013), 3, 75–88.
  • [12] Status report 75 – Advanced Passive pressurized water reactor. https://aris.iaea.org/PDF/AP-600.pdf (accessed 5 Jan. 2022).
  • [13] Status report 81 – Advanced Passive PWR (AP 1000). https://aris.iaea.org/PDF/
  • AP1000.pdf (accessed 5 Jan. 2022).
  • [14] Assessment and management of ageing of major nuclear power plant components important to safety: steam generators. https://www-pub.iaea.org/MTCD/publications/PDF/gnppa-cd/PDF-Files/SpecGuide/te_981_prn.pdf (accessed 5 Jan. 2022).
  • [15] Asmolov V.G., Gusev I.N., Kazanskiy V.R., Povarov V.P., Statsura D.B.: New generation first-of-the kind unit – VVER-1200 design features. Nucl. Energy Technol. 3(2017), 4, 260–269.
  • [16] Modeling of NPP with VVER-1200 by the coupled system code ATHLET/BIPRVVER using quasi 3D nodalisation of reactor pressure vessel and steam generators. https://inis.iaea.org/collection/NCLCollectionStore/_Public/39/077/39077460.pdf (accessed 5 Jan. 2022).
  • [17] The VVER Today. Evolution, Design, Safety. https://rosatom.ru/upload/iblock/0be/0be1220af25741375138ecd1afb18743.pdf (accessed 5 Jan. 2022).
  • [18] Enhanced CANDU 6. Technical Summary. https://www.snclavalin.com/˜/media/Files/S/SNC-Lavalin/documents/enhanced-candu-6-technical-summary-en.pdf (accessed 5 Jan. 2022).
  • [19] Yu S.K.W.: CANDU 9 design. IAEA-SM-353/50, 552–568. https://www.osti.gov/etdeweb/servlets/purl/20044438 (accessed 5 Jan. 2022).
  • [20] Status report 69 – Advanced Candu Reactor 1000 (ACR-1000). https://aris.iaea.org/PDF/ACR-1000.pdf (accessed 5 Jan. 2022).
  • [21] Cengel Y.A., Boles M.A.: Thermodynamics: An Engineering Approach (4th Edn.). McGraw-Hill, New York 2002.
  • [22] Darwish M.A., Awadhi F.M., Amer A.O.: Combining the nuclear power plant steam cycle with gas turbines. Energy 35(2010), 4562–4571.
  • [23] Safa H.: Heat recovery from nuclear power plants. Int. J. Elec. Power Energ. Syst. 42(2012), 1, 553–559.
  • [24] Nag P.K.: Power Plant Engineering. Tata McGraw-Hill Edu. New York 2002.
  • [25] Chmielniak T., Trela M. (Eds.): Diagnostics of New-Generation Thermal Power Plants. Wydawn. IMP PAN (IFFM), Gdańsk 2008.
  • [26] Laudyn D., Pawlik M., Strzelczyk F.: Power Plants. WNT, Warszawa 2007 (in Polish).
  • [27] Oziemski M.:Topping nuclear power plants steam cycles with gas turbines as the way of enhancing their efficiency. In: Proc. 5th Int. Conf. on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, 26-27 August, 2019.
  • [28] Seyyedi S.M., Hashemi-Tilehnoee M., Rosen M.A.: Exergy and exergoeconomic analyses of a novel integration of a 1000 MW pressurized water reactor power plant and a gas turbine cycle through a superheater. Ann. Nucl. Energy 115(2018) 161–172.
  • [29] Alsairafi A.A.: Energetic and exergetic analysis of a hybrid combined nuclear power plant. Int. J. Energ. Res. 36(2012), 891–901.
  • [30] Károly V.: Hybrid combined cycle power plant. In: Proc. Int. Conf. on Nuclear Energy for New Europe 2002, Kranjska Gora, Sept. 9-12, 2002.
  • [31] Su Y., Chaudri K.S., Tian W., Su G., Qiu S.: Optimization study for thermal efficiency of supercritical water reactor nuclear power plant. Ann. Nucl. Energy 63(2014) 541–547.
  • [32] Jaskólski M., Reński A., Minkiewicz T.: Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat. Energy 141(2017), 2470–2483.
  • [33] Lipka M., Rajewski A.: Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat. Prog. Nucl. Energ. 130(2020), 103518.
  • [34] Jaskólski M., Reński A., Duzinkiewicz K., Kaczmarek-Kacprzak A.: Profitability criteria of partial cogeneration in nuclear power plant. Rynek Energii 114(2014),141–147.
  • [35] Ansari K., Sayyaadi H., Amidpour M.: Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC). Energy 35(2010),1981–1996.
  • [36] Verfondern K., Yan X., Nishihara T., Allelein H.J.: Safety concept of nuclear cogeneration of hydrogen and electricity. Int. J. Hydrogen Energ. 42(2017), 7551–7559.
  • [37] Milewski J., Kupecki J., Szczęśniak A., Uzunow N.: Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. Int. J. Hydrogen Energ. 46(20212),72, 35765–35776.
  • [38] Wibisono A.F., Shwageraus E.: Thermodynamic performance of Pressurized Water Reactor power conversion cycle combined with fossil-fuel superheater. Energy 117,(2016), 190–197.
  • [39] Zaryankin A., Lyskov M., Arianov S., Rogalev A.: Super powerful steam superheaters and turbines for hybrid nuclear power plants. J. Power Technol. 91(2011), 4, 191–197.
  • [40] Wang C., Yan C., Wang J., Tian C., Yu S.: Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm. Appl. Therm. Eng. 125(2017), 830–845.
  • [41] Rosen M.A.: Energy- and exergy-based comparison of a coal-fired and nuclear steam power plants. Exergy Int. J. 1(2001), 3, 180–192.
  • [42] Teyssedou A., Dipama J., Hounkonnou W., Aubé F.: Modeling and optimization of a nuclear power plant secondary loop. Nucl. Eng. Des. 240(2010), 1403–1416.
  • [43] Sayyaadi H., Sabzaligol T.: Various approaches in optimization of a typical pressurized water reactor power plant. Appl. Energ. 86(2009), 1301–1310.
  • [44] Sayyaadi H., Sabzaligol T.: Exergoeconomic optimization of a 1000MW light water reactor power generation system. Int. J. Energ. Res. 33(2009), 378–395.
  • [45] Terzi R., Tukenmez I., Kurt E.: Energy and exergy analyses of a VVER type nuclear power plant. Int. J. Hydrogen Energ. 41(2016), 12465–12476.
  • [46] Ebrahimgol H., Aghaie M., Zolfaghari A., Naserbegi A.: A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Ann. Nucl. Energ. 145(2020), 107540.
  • [47] Durmayaz A., Hasbi Y.: Exergy analysis of a pressurized-water reactor nuclear power plant. Appl. Eng. 69(2001), 39–57.
  • [48] Marques J.G.O., Costa A.L., Pereira C., Fortini Â.: Energy and exergy analyses of Angra 2 nuclear power plant. Braz. J. Radiat. Sci. (2019), 07-02B, 01–18.
  • [49] Dunbar W.R., Moody S.D., Lior N.: Exergy analysis of an operating boiling-waterreactor nuclear power station. Energ. Convers. Manage. 36(1995), 3, 149–159.
  • [50] Fic A., Składzień J., Gabriel M.: Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle. Arch. Thermodyn. 36(2015), 1,3–18.
  • [51] Dudek M., Jaszczur M., Kolenda Z.: Thermodynamic analysis of modular hightemperature nuclear reactor coupled with the steam cycle for power generation. Arch. Thermodyn. 40(2019), 4, 49–66.
  • [52] Ganan J., Al-Kassir A.R., Gonzalez J.F., Macias A., Diaz M.A.: Influence of the cooling circulation water on the efficiency of a thermonuclear plant. Appl. Therm. Eng. 25(2005), 4, 485–494.
  • [53] Durmayaz A., Sogut O.S.: In?uence of cooling water temperature on the e?ciency of a pressurized-water reactor nuclear-power plant. Int. J. Energ. Res. 30(2006),799–810.
  • [54] Atria S.I.: The influence of condenser cooling water temperature on the thermal efficiency of a nuclear power plant. Ann. Nucl. Energ. 80(2015), 371–378.
  • [55] Khan H., Islam Md.S.: Prediction of thermal efficiency loss in nuclear power plants due to weather conditions in tropical region. Energy Proced. 160(2019), 84–91.
  • [56] Laskowski R., Smyk A., Uzunow N.: Influence of cooling water temperature on performance of EPR nuclear power plant. Rynek Energii 152(2021), 1, 57–62.
  • [57] Ebsilon Professional, 2015. https://www.steag-systemtechnologies.com/en/products/,ebsilon-professional (accessed 5 Jan. 2022).
  • [58] Jurkowski R.: EPR circuit – overview. Lecture at Institute of Heat Engineering at Warsaw University of Technology, Warsaw, Nov. 29–Dec. 3 (not printed).
  • [59] Szargut J.: Thermodynamics. PWN, Warszawa 2000 (in Polish).
  • [60] Bejan A.: Entropy generation minimization. The new thermodynamics of finite size devices and finite time processes. J. Appl. Phys. 79(1996), 1191–1218.
  • [61] Rosen M.A.: Energy- and exergy-based comparison of coal-fired and nuclear steam power plants. Exergy Int. J., 1(2001), 3, 180–192.
  • [62] Terzi R., Tukenmez I., Kurt E.: Energy and exergy analyses of a VVER type nuclear power plant. Int. J. Hydrogen Energ. 41(2016), 12465–12476.
  • [63] Talebi S., Norouzi N.: Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm. Nucl. Eng. Technol. 52(2020), 12, 2928–2938.
  • [64] Ebrahimgol H., Aghaie M., Zolfaghari A., Naserbegi A.: A novel approach in exergy optimization of a WWER1000 nuclear powerplant using whale optimization algorithm. Ann. Nucl. Energ. 145(2020), 107540.
  • [65] Ferroni L., Natale A., Gatto R.: Exergy analysis of a PWR core heat transfer. Int. J. Heat Technol. 34(2016), 465–471.
  • [66] Ferroni L., Natale A.: Exergy analysis of a PWR nuclear steam supply system – Part I, General theoretical model. Energy Proced. 148(2018), 1230–1237.
  • [67] Bahmanyar M.E., Talebi S.: A performance analysis of vertical steam generator using an entropy generation method. Ann. Nucl. Energ. 125(2019), 212–221.
  • [68] Naserbegi A., Aghaie M., Minuchehr A., Alahyarizadeh Gh.: A novel exergy optimization of bushehr nuclear power plant by gravitational search algorithm (GSA). Energy 148(2018), 373–385.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a1ef510-b7eb-4ebe-b2ae-f9e6a62d6bf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.