PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Variability in the Distribution of Nitrate Concentration at the Surface of the Southeast Indian Ocean

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The waters that surround the Indonesian archipelago are home to some of the most fruitful primary resources that can be found anywhere in the southeastern Indian Ocean. In this work, an investigation of seasonal fluctuations in nutrient content within the region, utilizing 30-years reanalysis data generated by Copernicus Marine Service, was presented. The month of September, October, November (SON) exhibits the maximum concentration of nitrate content, primarily observed in the southern region of Java and the Lombok Strait. The concentrations of nitrates experience significant changes that are notably impacted by Indian Ocean Dipole (IOD) occurrences. Specifically, a positive IOD event is associated with elevated nitrate levels, particularly during the period spanning from June to December. Furthermore, in the southern Java region, an inverse correlation was identified between nitrate concentrations and surface zonal currents, commonly referred to as the South Java Current (SJC). Concurrently, the reinforcement of the Indonesian Throughflow (ITF) in the Lombok Strait is consistently accompanied by an elevation in nitrate concentration within the southern region.
Twórcy
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
  • Coastal Processes Research Group, Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
  • Department of Physics and Earth Sciences, University of the Ryukyus, Nishihara, Japan
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
  • Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
  • Marine Science, Faculty of Science and Agricultural Technology, University of Muhammadiyah Semarang, Indonesia
Bibliografia
  • 1. Amri, K., Manurung, D., Gaol, J.L., Baskoro, S.M. 2013. Karakteristik Suhu Permukaan Laut Dan Kejadian Upwelling Fase Indian Ocean Dipole Mode Positif di Barat Sumatera Dan Selatan Jawa Barat. J Segara, 9(1), 23–35.
  • 2. Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., Gehlen, M. 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development, 8(8), 2465–2513. https://doi.org/10.5194/gmd-8-2465-2015.
  • 3. Ayers, J.M., Strutton, P.G., Coles, V.J., Hood, R.R., Matear, R. . 2014. Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity. Geophysical Research Letters, 41(14), 5060–5067. https://doi.org/10.1002/2014gl060593.
  • 4. Bode, A., Botas, J.A., Fernández, E. 1997. Nitrate storage by phytoplankton in a coastal upwelling environment. Marine Biology, 129(3), 399–406. https://doi.org/10.1007/s002270050180.
  • 5. Chazottes, V., Reijmer, J., Cordier, E. 2008. Sediment characteristics in reef areas influenced by eutrophication-related alterations of benthic communities and bioerosion processes. Marine Geology, 250(1–2), 114–127. https://doi.org/10.1016/j.margeo.2008.01.002.
  • 6. Feng, M., Zhang, N., Liu, Q., Wijffels, S. 2018. The Indonesian throughflow, its variability and centennial change. Geoscience Letters, 5(1). https://doi.org/10.1186/s40562-018-0102-2.
  • 7. Hauschildt, J., Thomsen, S., Echevin, V., Oschlies, A., José, Y.S., Krahmann, G., Bristow, L.A., & Lavik, G. 2021. The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts. Biogeosciences, 18(12), 3605–3629. https://doi.org/10.5194/bg-18-3605-2021.
  • 8. Hersbach, H., Dee, D.J.E.N. 2016 ERA5 reanalysis is in production. ECMWF newsletter., 147(7), 5–6.
  • 9. Higuchi, Y., Tozuka, T. 2022. Upper Ocean Temperature Variability Associated with the Indian Ocean Dipole Revealed by a Complex Network. Geophysical Research Letters, 49(9). https://doi.org/10.1029/2022gl098258.
  • 10.Iskandar, I., Wulan Sari, Q., Setiabudidaya, D., Yustian, I., Monger, B. 2017. The distribution and variability of chlorophyll-a bloom in the south-eastern tropical Indian Ocean using Empirical Orthogonal Function analysis. Biodiversitas Journal of Biological Diversity, 18(4), 1546–1555. https://doi.org/10.13057/biodiv/d180432.
  • 11. Jean-Michel, L., Eric, G., Romain, B.B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L.G., Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., Pierre-Yves, L.T. 2021. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.698876.
  • 12. Kurniawati, N., Sari, Q.W., Setiawan, R.Y., Siswanto, E., Fauziyah, F., Setiabudidaya, D., Iskandar, I. 2021. Surface Chlorophyll-A variations along the southern coast Of Java during two contrasting Indian Ocean Dipole events: 2015 and 2016. Journal Of Sustainability Science And Management, 16(3), 116–127. https://doi.org/10.46754/jssm.2021.04.010.
  • 13. Lellouche, J.M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., Le Traon, P.Y. 2018. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system. Ocean Science, 14(5), 1093–1126. https://doi.org/10.5194/os-14-1093-2018.
  • 14. Lihan, T., Saitoh, S.I., Iida, T., Hirawake, T., Iida, K. 2008. Satellite-measured temporal and spatial variability of the Tokachi River plume. Estuarine, Coastal and Shelf Science, 78(2), 237–249. https://doi.org/10.1016/j.ecss.2007.12.001.
  • 15. Luo, Y., Liu, L., Yang, Y., Liu, B., Yang, G., Wang, H., Su, Q., He, Q., Li, K., Duan, Y., Li, Q., Yu, W. 2022. Evaluation of meteorological reanalysis data over the tropical Western Indian Ocean based on buoy observations in 2022. Journal of Sea Research, 189, 102285. https://doi.org/10.1016/j.seares.2022.102285.
  • 16. Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X.H., Susanto, R.D. 2019. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43841-z.
  • 17. Muhammed Naseef, T., Sanil Kumar, V. 2019. Climatology and trends of the Indian Ocean surface waves based on 39‐year long ERA5 reanalysis data. International Journal of Climatology, 40(2), 979–1006. https://doi.org/10.1002/joc.6251.
  • 18. Ningsih, N.S., Sakina, S.L., Susanto, R.D., Hanifah, F. 2021. Simulated zonal current characteristics in the southeastern tropical Indian Ocean (SETIO). Ocean Science, 17(4), 1115–1140. https://doi.org/10.5194/os-17-1115-2021.
  • 19. Nur'utami, M.N., Hidayat, R. 2016. Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, 33, 196–203. https://doi.org/10.1016/j.proenv.2016.03.070.
  • 20. Rahman, A., Mondal, N.C., Tiwari, K.K. 2021. Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi arid area of Rajasthan, India. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88600-1.
  • 21. Shi, W., Wang, M. (2021). A biological Indian Ocean Dipole event in 2019. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81410-5.
  • 22. Sprintall, J., Révelard, A. 2014. The Indonesian Throughflow response to Indo‐Pacific climate variability. Journal of Geophysical Research: Oceans, 119(2), 1161–1175. https://doi.org/10.1002/2013jc009533.
  • 23. Suryadi, I.B.B., Kelana, P.P. 2017. Struktur Komunitas Fitoplankton di Perairan Pangandaran. Akuatika Indonesia, 2(2), 163. https://doi.org/10.24198/jaki.v2i2.23419.
  • 24. Wen, C., Wang, Z., Wang, J., Li, H., Shi, X., Gao, W., Huang, H. (2023). Variation of the coastal upwelling off South Java and their impact on local fishery resources. Journal of Oceanology and Limnology, 41(4), 1389–1404. https://doi.org/10.1007/s00343-022-2031-3.
  • 25. Wijaya, N.I., Elfiansyah, M. 2022. The influence of nitrate and phosphate concentration on the abundance of plankton at the estuary of Bengawan Solo, Gresik, East Java. AACL Bioflux, 15(1), 83-95.
  • 26. Wijaya, Y.J., Wisha, U.J., Rejeki, H.A., Ismunarti, D.H. 2023. Variability of the South Java Current from 1993 to 2021, and its relationship to ENSO and IOD events. Asia-Pacific Journal of Atmospheric Sciences. https://doi.org/10.1007/s13143-023-00336-2.
  • 27.Wirasatriya, A., Setiawan, J.D., Sugianto, D.N., Rosyadi, I.A., Haryadi, H., Winarso, G., Setiawan, R.Y., Susanto, R.D. 2020. Ekman dynamics variability along the southern coast of Java revealed by satellite data. International Journal of Remote Sensing, 41(21), 8475–8496. https://doi.org/10.1080/01431161.2020.1797215.
  • 28. Wu, W., Du, Y., Qian, Y., Chen, J., Jiang, X. 2022. Large South Equatorial Current Meander in the Southeastern Tropical Indian Ocean Captured by Surface Drifters Deployed in 2019. Geophysical Research Letters, 49(4). https://doi.org/10.1029/2021gl095124.
  • 29. Xu, H., Paerl, H.W., Qin, B., Zhu, G., Gaoa, G. 2009. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 55(1), 420–432. https://doi.org/10.4319/lo.2010.55.1.0420.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a1e7532-fb87-47c4-8d72-4843ccdaa40b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.