
140

INTRODUCTION

The limitation of phytoplankton production in 
marine environments is commonly acknowledged 
to be primarily caused by the presence of mixed 
inorganic nitrogen, which serves as the major nu-
trient. There is a substantial amount of nitrogen 
being transported within river systems. The ni-
trogen in question is sourced through fertilizers, 
manure, waste materials, and various human ac-
tivities. The flow of nitrogen into maritime areas 
is influenced by various factors, including rainfall 
intensity and the discharge of river water. As a 
consequence, there has been an increase in the 
concentration of nutrients in aquatic ecosystems 

(Lihan et al., 2008; Chazottes et al., 2008). Nutri-
ents are of paramount importance in the environ-
ment, since they serve to enhance life and furnish 
vital constituents, such as a nourishment supply 
for another organism. Nitrate, a compound con-
sisting of essential nutrients, serves as an indica-
tion for the assessment of water quality.

Nitrate is the major nitrogen component that 
is consumed by primary producers in marine en-
vironments. These producers include algae, bac-
teria, and fungi. In addition, it plays an important 
role in the process of photosynthesis as the pri-
mary nutrient that is necessary for it. The opti-
mal growth and development of phytoplankton 
are dependent on the presence of nitrate within a 
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ABSTRACT
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June to December. Furthermore, in the southern Java region, an inverse correlation was identified between nitrate 
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the reinforcement of the Indonesian Throughflow (ITF) in the Lombok Strait is consistently accompanied by an 
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concentration range of 5 to 19 mmol/m3 (Suryadi 
et al. 2017; Wijaya and Elfiansyah 2022). The per-
sistent release of organic waste into the water that 
flows through rivers causes an accumulation of 
nutrients along coastal areas. This, in turn, leads 
to eutrophication and upsets the delicate ecologi-
cal balance that exists there (Xu et al. 2010; Rah-
man et al. 2021). Eutrophic water is characterized 
as an aquatic milieu in which the content of nitrate 
is between the designated range of 27.8 to 416.7 
mmol/m3 (Wetzel 2001). Coastal and open-ocean 
nitrate concentration increases are frequently cor-
related with upwelling phenomena (Bode et al. 
1997; Hauschildt et al. 2021).

The archipelagic region of Indonesia, located 
in the southeastern Indian Ocean, frequently ex-
periences upwelling. This phenomenon affects 
the southern islands of Indonesia, a territory span-
ning from Java to East Nusa Tenggara (Amri et 
al. 2013; Wirasatriya et al. 2020). The oceano-
graphic state of the waters in southern Indonesia 
is subject to the influence of a number of estab-
lished factors (Figure 1). The South Java Current 
(Wijaya et al. 2023; Ningsih et al. 2021), Indo-
nesian Throughflow (Feng et al. 2018; Makarim 
et al. 2019), South Equatorial Current (Wu et al. 
2019), Rossby and Kelvin wave, and others are 
examples of such factors. The El Nino Southern 
Oscillation (ENSO) and the Indian Ocean Dipole 
(IOD) are strong ocean-atmosphere phenomena 
that play a substantial role in the modulation of 
upwelling patterns within the southern Indone-
sian waters.

Using reanalysis data gathered over a thirty-
year period, the purpose of this investigation was 
to determine the degree to which nitrate con-
centrations vary across the southern Indonesian 
archipelago. This was accomplished by examin-
ing the data. In addition, it is quite important to 
determine the characteristics that have a role in 
influencing its distribution. In addition, the pat-
terns of oceanic currents, wind patterns, and the 
temperature of the sea surface were investigated 
in relation to the spatial distribution of nitrate as 
part of this study.

MATERIAL AND METHOD

The geographical scope of the study area ex-
tends from 100°E to 130°E and 4°S to 15°S in the 
southeast of the Indian Ocean. The dataset used 
for the analysis of nitrate distribution spanning 
from January 1993 to December 2022 was ob-
tained from a global biogeochemical multi-year 
hindcast given by Copernicus Marine Environ-
ment Monitoring Service (CMEMS). PISCES, 
a model available on the NEMO platform, was 
utilized in order to carry out the process of acquir-
ing the reanalysis data (Aumont et al. 2015). The 
examination of nitrate reanalysis data and World 
Ocean Atlas (WOA) data demonstrates a signifi-
cant level of global agreement. The nitrate data 
that was included in this study possesses a spatial 
resolution of 0.25 degrees and represents surface-
level measurements.

Figure 1. The observation region is marked by a red box. The ITF, denoted by a blue arrowhead, reaches the 
Indian Ocean via the Lombok Strait after traversing the Makassar Strait. In addition, a zonal flow known as the 
SJC occurs just south of Java
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The conducted research used the CMEMS glob-
al ocean reanalysis data, which has a spatial resolu-
tion of 0.083 degrees in both longitude and latitude. 
The reanalysis data presented herein was acquired 
from a model in which the NEMO platform serves 
as a component, with surface-level propulsion 
facilitated by the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim 
reanalysis. The study of this data showcases posi-
tive results through the utilization of assimilated 
data, including satellite altimetry, satellite sea sur-
face temperature (SST), and in situ measurements 
of temperature and salinity. This data was collected 
expressly for the purpose of conducting an analysis 
of ocean current and SST data (Jean-Michel et al. 
2018; Lellouche et al. 2018). 

In addition to this, the zonal and meridional 
wind components at a height of 10 meters are used 
on a monthly basis in the analysis. The aforemen-
tioned components were obtained from the fifth ver-
sion of the ECMWF reanalysis data; Hersbach and 
Dee (2016) reported the specifics of the acquisition. 
As a direct result of the earlier ECMWF efforts to 
compile reanalysis data packages, the ERA5 prod-
uct has been subjected to additional enhancements. 
The ERA5 atmospheric reanalysis employed data 
sourced from the assimilation system of the inte-
grated prediction system (IFS) version 41r2. A grid 
spacing of 0.25 degrees by 0.25 degrees has been 

applied to these wind components. The utilization 
of ERA5 reanalysis data has facilitated a more 
comprehensive examination of atmospheric inter-
action events occurring in the Indian Ocean (Luo et 
al. 2022; Naseef and Kumar 2019).

RESULTS

Variations in nitrate concentration with the 
seasons

Figure 2 presents a visual representation of the 
seasonal variations that occur in the spatial distri-
bution of nitrates in the southern region of Java. 
The data clearly indicates that the concentration 
of nitrate exhibits a noticeable upward trend dur-
ing the months of June, July, and August (JJA) 
and September, October, and November (SON), 
culminating in its peak during the SON period. 
The result aligns with the occurrence of upwell-
ing in the region, which can be attributed to the 
passage of the southeast monsoon from Australia 
to Asia (Wen et al. 2023; Wirasatriya et al. 2020; 
Iskandar et al. 2017). The presence of changes 
in nitrate concentrations is seen not only in the 
southern region of Java, but also in the Lombok 
Strait, which serves as the exit route for the ITF 
(Sprintfall and Révelard 2014).

Figure 2. The seasonal distribution of nitrates in the southern region of the Indonesian 
archipelago Picture a) for Months MAM; b) for JJA; c) for SON; and d) for DJF



143

Ecological Engineering & Environmental Technology 2024, 25(2), 140–149

The primary mode for each season was 
found by Empirical Orthogonal Function (EOF) 
analysis in order to enhance the understanding 
of the variations in nitrate concentrations over 
the course of the past three decades (Figure 3). 
The findings from the EOF analysis suggest that 
the significant gradient of nitrate observed in the 
southern waters of the Indonesian archipelago is 
the primary driver for most of the observed vari-
ables. The dominant EOF (EOF1) mode explains 
more than 70% of the overall variability in nitrate 
concentrations throughout all seasons, with the 
exception of MAM. The four seasonal periods of 
MAM, JJA, SON, and DJF contributed to the to-
tal variance in the subsequent proportions: 45%, 
80%, 89%, and 74%, respectively.

The spatial distribution of the EOF1 for the 
months of MAM reveals that the positive anomaly 
of nitrate in southern Java exhibits a near-uniform 
pattern. The attributes of this pattern exhibit a re-
semblance to the typical distribution of nitrates as 
depicted in Figure 2. The observed phenomenon 
can perhaps be attributed to infrequent upwelling 
occurrences in the southern region of Java, result-
ing from the coastward movement of Ekman trans-
port (Wirasatriya et al. 2020). The time series data 
(PC1) reveals a decline in nitrate concentrations 
in the proximity of the observation site throughout 
the previous two-year period (2021-2022), char-
acterized by a prominent negative trend.

During the months of JJA, Southern Java and 
the exit route of ITF (Lombok Strait) displayed 
notable favorable anomalies in the EOF1. The 
transportation of nitrate to the ocean surface can 
occur due to upwelling phenomena induced by 
the prevailing east monsoon winds, which exhibit 
their maximum intensity during this period. The 
analyzed time series data reveals that the high-
est positive phase was observed in both 1994 
and 2019. A positive Indian Ocean Dipole (IOD) 
event will lead to the generation of an upwelling 
Kelvin wave in the central region of the Indian 
Ocean. The aforementioned wave will proceed 
to travel towards the southern regions of Java, 
resulting in the amplification of the pre-existing 
upwelling phenomenon in that area (Susanto et 
al. 2001; Horii et al. 2018). Furthermore, the oc-
currence of the negative phase has been observed 
during the course of the past three years (span-
ning from 2020 to 2022).

The spatial distribution pattern depicted by 
the EOF1 for the months of SON closely resem-
bles that of JJA. This remains associated with the 

monsoon system that influences the Indonesian 
archipelago, leading to the generation of seaward 
Ekman transport upwelling (Wirasatriya et al. 
2020; Shi and Wang 2021). Positive phases that 
were most prevalent were identified in PC1 in the 
years 1994, 1997, 2006, and 2019. A powerful 
positively charged IOD can be considered to be 
the cause of this.

The DJF EOF1 analysis reveals a notable 
positive anomaly located to the west of the Sunda 
Strait. Distinction exists between the observed 
patterns and the average spatial distribution il-
lustrated in Figure 2. Indeed, during the month 
of DJF, occurrences of upwelling in southern 
Java are exceedingly uncommon, owing to the 
northwest monsoon that prevails (Kurniawati 
et al. 2021). This indicates that other significant 
factors led to the predominance of the nitrate dis-
tribution pattern over the past three decades. On 
the basis of  the linked time series PC1, it can 
be observed that positive phases were exclusive-
ly observed in the years 1998, 2007, and 2020. 
The years subsequent to the customary peak of 
positive IOD events in the months of SON. In the 
years with a preponderantly positive phase, such 
as 1997/1998, 2007/2008, and 2019/2020, it is 
extremely intriguing to observe the distribution 
of nitrate further.

Figures 4, 5, and 6 depict the nitrate distribu-
tion from September to February (+1) in the years 
1997, 2006, and 2019, respectively. The regions 
of Southern Java and the Lombok Strait consis-
tently exhibit elevated levels of nitrate concentra-
tions during the months of September to Novem-
ber, as observed across every year of observation. 
The December distribution is represented differ-
ently. West of the Sunda Strait, elevated nitrate 
concentrations were observed in both 1997 and 
2019. The distribution pattern exhibits similari-
ties to the EOF1 pattern observed during the DJF. 
Conversely, elevated levels of nitrate were still 
detectable in the southern region of Java Island 
in 2006. During all years of observation, nitrate 
concentrations did not increase during the months 
of January and February, with the exception of 
1998, when trace amounts were detected west of 
the Sunda Strait. In the year 2006, it was observed 
that there was a wider distribution of high nitrate 
levels in the western region of southern Lombok 
(September and November). The year 1997 saw 
a somewhat lesser degree of westward expansion 
in terms of nitrate concentrations, as compared to 
the two remaining years. The exploration of the 
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variations in nitrate levels in southern Java and 
the Lombok Strait presents a highly captivating 
area for additional investigation.

The interplay between the atmosphere and the 
ocean, known as the IOD, has a notable impact 
on the distribution of nitrate in the southeastern 

region of the Indian Ocean. The information 
shown above provides evidence of an association 
between positive IOD events and elevated nitrate 
concentrations throughout time. The several man-
ifestations of the IOD exert a significant influence 
on various climatological and oceanographic 

Figure. 3. Nitrate’s primary mode of EOF and PC. A) represents the month 
MAM; b) represents JJA; c) represents SON; and d) represents DJF
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parameters within the Indian Ocean region, in-
cluding wind patterns, ocean currents, and SST. 
The forthcoming subsection will determine which 
among these factors exerts the greatest influence 
of the dispersion of nitrate.

The correlation between the fluctuations of 
several variables and the spatial arrangement of 
nitrate concentrations in certain places was calcu-
lated and graphically depicted in Figures 7 and 8.  

The South Java Current (SJC) is a dynamic 
zonal current that exhibits seasonal variability. 
Its behavior is controlled by various factors, 
including wind patterns and the propagation of 
oceanic waves within the region. The average 
zonal current speed and nitrate content in the 
southern Java region (103°E to 111°E and 6.8°S 
to -9°S) were computed and subsequently com-
pared to the graphical representation shown in 

Figure 4. The monthly means of the distribution of nitrate. The corresponding months are as follows: 
a) September 1997, b) October 1997, c) November 1997, d) December 1997, e) January 1998, and f) February 1998

Figure 5. The monthly means of the distribution of nitrate. The corresponding months are as follows:  
a) September 2006, b) October 2006, c) November 2006, d) December 2006, e) January 2007, and f) February 2007
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Figure 6. The monthly means of the distribution of nitrate. The corresponding months are as follows:  
a) September 2019, b) October 2019, c) November 2019, d) December 2019, e) January 2020, and f) February 2020

Figure 7. a) An analysis of the relationship between nitrate distribution (blue line) and zonal current (red line) in 
the southern region of Java; b) A comparison of nitrate distribution (blue line) and meridional current (red line) in 
the southern portion of the Lombok Strait
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Figure 7a. ITF responsible for the transport of 
water masses from the Pacific Ocean, follows 
multiple pathways to reach the Indian Ocean. 
One of these pathways involves traversing the 
Makassar Strait before proceeding through the 
Lombok Strait and ultimately reaching the Indi-
an Ocean. Therefore, the meridional velocity of 
surface currents in the Lombok Strait (115.5°E 
to 115.9°E and 8.2°S to 9°S) is quantified, subse-
quently facilitating a comparative analysis with 
the mean nitrate concentration in the southern 
region (115.2°E to 116.5°E and 9°S to 10.2°S) 
(Figure 7b).

On the basis of the data depicted in Figure 7,  
a discernible link can be established between the 
current at the two observation locations and ni-
trate concentrations, indicating a moderate rela-
tionship (-0.4 < r < -0.6). SJC is a zonal oceanic 
current that exhibits a prevailing eastward ten-
dency. This observation indicates that a rise in 
nitrate concentration occurs when SJC has nega-
tive or weakened characteristics, or when the 

flow direction of SJC is westward (Figure 7a). 
According to the study conducted by Wijaya et 
al. in 2023, it was shown that SJC exhibits a neg-
ative association with the Indian Ocean Dipole 
(IOD). Consequently, during periods of positive 
IOD phases, there is an observed weakening of 
the eastward flow of SJC. This is the reason why, 
in the context of IOD, a positive phase of IOD 
is associated with elevated nitrate concentrations 
in the southern region of Java. Moreover, there 
exists an inverse correlation between the meridi-
onal surface current in the Lombok Strait and the 
distribution of nitrate in the southern region of 
Lombok Strait (Figure 7b). The result suggests 
that the intensification (weakening) of the south-
ward surface flow in the Lombok Strait is con-
comitant with an augmentation (diminishment) 
of the nitrate concentration in the southern region 
of the Lombok Strait, which is consistent with 
the findings of the research conducted by Ayers 
et al. (2014).

Figure 8. a) An analysis of the relationship between nitrate distribution (blue line) and SST (red line) in the 
southern region of Java; b) A comparison of nitrate distribution (blue line) and zonal wind anomaly (red line) in 
the southern region of Java
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Subsequently, an analysis was conducted to 
determine the correlation between the distribu-
tion of nitrate and SST as well as zonal wind pat-
terns in the southern region of Java (Figure 8).  
It was observed that the concentrations of nitrate 
exhibit an upward (downward) trend in response 
to the cooling (warming) of the water (Figure 8a).  
The reduction in sea surface temperature (SST) 
in the southern region of Java serves as an in-
dicator of an upwelling phenomenon, wherein 
nutrients located at the lower depths of the water 
column are transported to the surface. IOD has 
a positive phase, leading to the cooling of wa-
ter masses in the southeastern area of the Indian 
Ocean (Higuchi and Tozuka, 2022; Nur’utami 
and Hidayat, 2016). This cooling phenomenon is 
mostly attributed to the propagation of the up-
welling Kelvin wave. In contrast, there is no dis-
cernible direct association between the distribu-
tion of nitrate and wind patterns in the southern 
region of Java (Figure 8b).

CONCLUSIONS

The nitrate distribution in the southern wa-
terways of the Indonesian archipelago exhibits 
a distinct seasonal pattern, characterized by the 
maximum peak in nitrate concentrations occur-
ring during the month of SON. The distribution 
of nitrates exhibits a significant correlation with 
the phenomena of IOD. Specifically, during the 
years characterized by a positive IOD, there is 
an observed elevation in nitrate concentrations 
that surpasses the typical levels. SJC is associ-
ated with the spatial distribution of nitrate in the 
southern region of Java. When the strength of 
SJC is diminished, there will be an observed in-
crease in nitrate concentration. Conversely, when 
SJC is reinforced, a decrease in nitrate concen-
tration will be observed. The inverse relation-
ship can be observed between ITF traversing the 
Lombok Strait and the distribution of nitrate in 
the southern region of the Strait. The increase 
(decrease) in nitrate concentration occurs simul-
taneously with the increase (decrease) in ITF sur-
face currents.
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