Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: Delivery of bicarbonate during hemodialysis (HD) is aimed at correcting metabolic acidosis in end-stage renal disease patients. We tested modified prescriptions of bicarbonate concentration in dialysis fluid (CD, bic), aimed to achieve an optimal pre-dialytic bicarbonate plasma concentration (CP,bic). Methods: We used a mathematical model to prescribe individualized HD treatments consisting of 1) adjustment of CD,bic to get the pre-dialytic CP,bic in a prescribed range, 2) increase of bicarbonate load before the long interdialytic break, and 3) a single step of increase in CD,bic after two hours. The outcomes were tested in 24 stable HD patients, monitored during a week of standard HD (Test Week) and a week of modified treatment (Intervention Week). Results: The response to the model-based prescription was different whether the average CD,bic during the Intervention Week was higher or lower than the constant value used for the Test Week. For patients with lower average CD,bic during the Intervention Week, a significant fraction achieved the target (22 ≤ CP,bic ≤ 24 mEq/L). In the group with higher average CD,bic, the interventions were effective only in increasing post-dialytic CP,bic. The simple step-increase profile was effective in linearizing the intradialytic increase in bicarbonate and decreasing the amount of time spent by patients at high plasma CP,bic. Conclusions: The interventions were effective mostly in patients who needed to lower their pre-dialytic CP,bic. The resistance of the system to increasing pre-dialytic CP,bic in other patients might be caused by modifications of breathing or in hydrogen generation that were not accounted for by our model.
Wydawca
Czasopismo
Rocznik
Tom
Strony
836--843
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
autor
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
autor
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
autor
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- [1] Wu DY, Shinaberger CS, Regidor DL, McAllister CJ, Kopple JD, Kalantar-Zadeh K. Association between serum bicarbonate and death in hemodialysis patients: is it better to be acidotic or alkalotic? Clin J Am Soc Nephrol 2006;1:70-8. https://doi. org/10.2215/CJN.00010505.
- [2] Bommer J, Locatelli F, Satayathum S, Keen ML, Goodkin DA, Saito A, et al. Association of predialysis serum bicarbonate levels with risk of mortality and hospitalization in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2004;44:661-71. https://doi.org/10.1053/J.AJKD.2004.06.008.
- [3] Vashistha T, Kalantar-Zadeh K, Molnar MZ, Torlén K, Mehrotra R. Dialysis modality and correction of uremic metabolic acidosis: Relationship with all-cause and cause-specific mortality. Clin J Am Soc Nephrol 2013;8:254-64. https://doi. org/10.2215/CJN.05780612/-/DCSUPPLEMENTAL.
- [4] Tentori F, Karaboyas A, Robinson BM, Morgenstern H, Zhang J, Sen A, et al. Association of Dialysate Bicarbonate Concentration With Mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2013;62:738-46. https://doi.org/10.1053/J.AJKD.2013.03.035.
- [5] Tovbin D, Sherman RA. Correcting Acidosis during Hemodialysis: Current Limitations and a Potential Solution. Semin Dial 2016;29:35-8. https://doi.org/10.1111/SDI.12454.
- [6] Wieliczko M, Twardowska-Kawalec M, Debowska M, Pietribiasi M, Bialonczyk U, Waniewski J, et al. Effect of time-dependent dialysate bicarbonate concentrations on acid-base and uremic solute kinetics during hemodialysis treatments. Sci Rep 2024;14. https://doi.org/10.1038/S41598-024-52757-2.
- [7] Marano M, Marano S, Gennari FJ. Beyond bicarbonate: complete acid-base assessment in patients receiving intermittent hemodialysis. Nephrol Dial Transplant 2017;32:528-33. https://doi.org/10.1093/NDT/GFW022.
- [8] Leypoldt JK, Pietribiasi M, Debowska M, Wieliczko M, Twardowska-Kawalec M, Malyszko J, et al. Evaluating hydrogen ion mobilization during hemodialysis using only predialysis and postdialysis blood bicarbonate concentrations. Int J Artif Organs 2024. https://doi.org/10.1177/03913988241268026/SUPPL_FILE/SJPDF-1-JAO-10.1177_03913988241268026.PDF.
- [9] Leypoldt JK, Pietribiasi M, Debowska M, Wieliczko M, Twardowska-Kawalec M, Malyszko J, et al. Validity of the hydrogen ion mobilisation model during haemodialysis with time-dependent dialysate bicarbonate concentrations. Https:// DoiOrg/101177/03913988231179233 2023;46:507-13. https://doi.org/10.1177/03913988231179233.
- [10] Sargent JA, Marano M, Marano S, Gennari FJ. Acid-base homeostasis during hemodialysis: New insights into the mystery of bicarbonate disappearance during treatment. Semin Dial 2018;31:468-78. https://doi.org/10.1111/SDI.12714.
- [11] Wolf MB. Mechanisms of Acid-Base Kinetics during Hemodialysis: A Mathematical-Model Study. ASAIO J 2021;67:1263-7. https://doi.org/10.1097/ MAT.0000000000001366.
- [12] Marano S, Marano M, John GF. A New Approach to Bicarbonate Addition during Hemodialysis: Testing Model Predictions in a Patient Cohort. IEEE Access 2022;10: 17473-83. https://doi.org/10.1109/ACCESS.2022.3147261.
- [13] Pietribiasi M, Waniewski J, Leypoldt JK. Mathematical modelling of bicarbonate supplementation and acid-base chemistry in kidney failure patients on hemodialysis. PLoS One 2023;18. https://doi.org/10.1371/JOURNAL.PONE.0282104.
- [14] Gennari FJ, Marano M, Marano S. Replenishing Alkali During Hemodialysis: Physiology-Based Approaches. Kidney Med 2022;4. https://doi.org/10.1016/J.XKME.2022.100523.
- [15] Rees SE, Andreassen S. Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng 2005;33: 209-64. https://doi.org/10.1615/CRITREVBIOMEDENG.V33.I3.10.
- [16] Andreassen S, Rees SE. Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng 2005;33:265-98. https://doi.org/10.1615/CRITREVBIOMEDENG.V33.I3.20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a18fcfe-c60e-4fa1-b3b9-a1466485ccdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.