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Gearbox faults identification usinG vibration siGnal analysis and 
artificial intelliGence methods

identyfikacja uszkodzeń skrzyni bieGów za pomocą analizy 
syGnału drGań oraz metod sztucznej inteliGencji

The paper addresses the implementation of feature based artificial neural networks and vibration analysis for the purpose of 
automated gearbox faults identification. Experimental work has been conducted on a specially designed test rig and the obtained 
results are validated on a belt conveyor gearbox from a mine strip bucket wheel excavator SRs 1300. Frequency and time domain 
vibration features are used as inputs to fault classifiers. A complete set of proposed vibration features are used as inputs for self-
organized feature maps and based on the results a reduced set of vibration features are used as inputs for supervised artificial 
neural networks. Two typical gear failures were tested: worn gears and missing teeth. The achieved results show that proposed set 
of vibration features enables reliable identification of developing faults in power transmission systems with toothed gears.

Keywords: gearbox vibration, gear fault, artificial neural network, self-organized feature map.

Artykuł omawia zastosowanie sztucznych sieci neuronowych opartych na cechach oraz analizy drgań do celów automatycznej 
identyfikacji uszkodzeń skrzyni biegów. Prace eksperymentalne  przeprowadzono na specjalnie zaprojektowanym stanowisku ba-
dawczym, a uzyskane wyniki zweryfikowano na przykładzie przekładni przenośnika taśmowego koparki wielonaczyniowej SRs 
1300 wykorzystywanej w kopalni odkrywkowej. Cechy drgań w dziedzinie czasu i częstotliwości są wykorzystywane jako wejścia 
klasyfikatorów uszkodzeń. Kompletny zbiór proponowanych cech drgań wykorzystano jako wejścia samoorganizujących się map 
cech, a na podstawie wyników opracowano zredukowany zbiór cech drgań, które wykorzystano jako wejścia do nadzorowanych 
sztucznych sieci neuronowych. Zbadano dwa typowe uszkodzenia przekładni : zużycie przekładni oraz brakujące zęby przekładni. 
Uzyskane wyniki wskazują, że proponowany zbiór cech drgań umożliwia niezawodną identyfikację rozwijających się uszkodzeń w 
układach przenoszenia napędu z kołami zębatymi.

Słowa kluczowe: drgania skrzyni biegów, uszkodzenie skrzyni biegów, sztuczna sieć neuronowa, samoorganizu-
jąca się mapa cech.

1. Introduction

Rotating machines are the most common type of machines found 
in different industry fields and they have to work with high per-
formances. An unscheduled stop due to the machine’s failure leads 
to high maintenance and production costs risks. High costs are initi-
ated through the production stops, losses, and urgent procurements of 
spare parts. High risks are associated with the possibilities of workers’ 
injuries and secondary damages of neighboring machines. To avoid 
such a scenario, several maintenance strategies have been developed, 
from the breakdown maintenance to condition based and proactive 
maintenance. The implementation of condition-based maintenance 
implies monitoring of machine operating condition based on the 
physical parameter that is sensitive to machine degradation. Among 
many possible parameters, mechanical vibration acquired at the bear-
ing’s housing is one of the best parameter for early detection of a de-
veloping fault inside a machine. Methods of vibration signal analysis 
enable the extraction of type and severity of a fault. Despite the fact 
that the information on type and severity of a fault is contained in the 
vibration signal, due to the:

existence of multiple faults on a machine,a. 
dependence of vibration signal content on operating condi-b. 
tions,  
existence of vibration components from neighboring ma-c. 
chines, 

 derivation of incorrect vibrodiagnostical conclusions and 
wrong estimation of machine criticality in the plant, is a very 
common situation. To avoid this, there are two approaches:

engagement of highly skilled and trained vibration a. 
analysts or 
application of artificial intelligence (AI) methods b. 
for reliable extraction of an existing fault.

Engagement of certified vibration analysts can be a prob-
lematic issue due to the following reasons: there are not many 
of them, in many cases they don’t have a substitution when 
absent and they are often engaged in other maintenance tasks 
so they cannot be fully focused on the analysis of acquired 
data from the machine. In such an environment, implementa-
tion of AI methods through previously developed and vali-
dated fault identification algorithm has a huge potential. 

There are several methods of AI, which can be used for 
automatic fault identification of rotating machine: artificial 
neural networks (ANN), fuzzy logic, expert systems and hy-
brid intelligence systems. The most applied are ANN [22, 
1]. One of the reasons for that is due to their ability to learn 
i.e. to adopt novelties. This adaptability of ANN results in a 
possibility for detection of an existence of a new condition 
(fault) based on the existing data [21, 9]. In addition, ANN 
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are efficient in modeling of complex nonlinear phenomena that are 
present in several types of rotating machinery faults. 

A review of existing literature [10, 6, 20] shows that several types 
of ANN  are successfully implemented in automatic fault identifica-
tion: back propagation feed forward network (BPFF), multiple layer 
perceptron network (MLP), back propagation multiple layer percep-
tron (BPMLP), radial basis function network (RBF), self-organized 
feature map (SOFM) and principal component’s analysis (PCA). An 
excellent review of different types of ANN and training algorithms im-
plementation for different types of rotating machinery can be found in 
[17]. From the data presented, the increasing trend of implementation 
of MLP with back propagation training algorithm, with the number of 
neurons in hidden layers taken as a variable, is evident. 

A successful implementation of BPMLP and SOFM for the iden-
tification of gearbox faults can be found in [2, 3, 8, 12, 14, 16, 19, 7]. 
The authors used different scalar features obtained from vibration data 
as inputs for neuron classifiers. 

In this paper, the authors used vibration scalar features obtained 
in both, frequency and time domains. Definition of vibration features 
is done based on an assumption that these parameters are sensitive to 
gearbox failures tested in this paper: worn gears and missing teeth.

2. Vibration analysis techniques for gearbox failures 
identification

The main origin of vibrations in gearboxes is a tooth meshing 
which is transient by its nature. According to [15] there are several 
components of gear vibrations: components at the gear mesh frequen-
cies (GM) due to the tooth profile deviation from an ideal profile, 
components of amplitude modulation due to the gearbox load vari-
ation, components of the frequency modulation due to the uneven 
space between individual teeth and transients due to the surface ir-
regularities on the tooth surface.  Along with these components from 
the gears, the vibration signal acquired from the gearbox housing can 
contain components due to the 
existing unbalance, misalign-
ment, defective bearings, bent 
and cracked shafts, looseness 
etc. Gearbox GM components 
are calculated for every trans-
mission stage as:
 

* *in in out outGM T f T f= =   (1)

where Tin and Tout are number of 
teeth on input and output gear, 
respectively, while fin and fout are 
rotating frequencies of the input 
and output shaft, respectively.

The most exploited vibra-
tion signal analysis techniques for 
gearbox defect identification are: 
time domain techniques, frequency domain techniques, cepstrum analy-
sis and time –frequency techniques.

Time domain techniques are focused on extracting the statistical 
indices of time wave in order to quantify the transient phenomena that 
originates from the defective gear. Time domain techniques for gear-
box diagnostics can be performed on several types of time waveform: 
raw time waveform, time waveform obtained through synchronized 
time averaging technique (TSA), residual time waveform, differen-
tial time waveform and band pass filtered time waveform. Residual 
time waveform is obtained from TSA waveform by removal of har-
monic families of shaft speed and gear mesh components, while the 
band pass filtered time waveform is a result of a band pass filtering of 
TSA  time waveform around a gear mesh component and its modu-

lation sidebands. Differential signal is obtained by removal of side-
bands from a residual signal. Scalar features that can be extracted on 
these time waveforms are classic features from higher order statistics, 
such as root mean square (RMS), peak values (P), standard deviation 
(StDev), kurtosis parameter (Kurt), skewness (Sk) and also special 
features developed for gearbox monitoring [18]. 

Frequency domain techniques refer mainly to the representation 
of the time signal in frequency domain using the algorithm of Fast 
Fourier transformation (FFT). The main advantage in using cepstrum 
analysis is the ability to detect periodicity in frequency domain i.e. 
repeated patterns in a spectrum, which is common in cases with de-
fective gears. Time - frequency methods founded their role in gearbox 
diagnostics since, due to the presence of transients generated by the 
gear mesh activity, the signal is non-stationary. As a result, time-fre-
quency methods provide a simultaneous view in both domains (time 
and frequency). The main time-frequency methods used are short time 
Fourier transformation (STFT), Wigner-Ville distribution (WVD) and 
Wavelet analysis (WA).

3. Experimental set up and results

The test rig, designed for the purpose of dataset collection, is 
shown on the Figure 1. The test rig consists of a 0.37kW variable fre-
quency drive connected over the universal joint shaft to the single stage 
gearbox with spur gears. In reality and especially in mining industry, 
gearboxes often operate under the conditions of unsteady load and 
speed. As a result, their behavior and acquired vibration signals are 
very dependent on the current operating regime [4, 5, 23, 24]. For the 
purpose of load detection and control, the output shaft is connected to 
the friction brake. The resulting torque is measured through the bend-
ing force registered with a platform type load cell. For the purpose of 
load control, the stranded wire is connected to the friction pads and 
over the pulley; the other end is loaded by the mounted weight. This 
assures a constant torque for different level of brake pads wornness. 

Gearbox vibrations are measured in radial directions, using an 
industrial type IEPE accelerometers mounted at the roller element 
bearing housings using mounting studs. Input shaft speed is meas-
ured using a non-contacting laser sensor and a reflective mark. Also 
equivalent noise levels with A weighting were measured using an 
IEPE based microphone. Three sets of gears were tested: gears in a 
new condition, worn gears and gears with two missing teeth on the 
input gear, labeled as “OKOK”, “PZOK” and “NZOK”, respectively. 
All the tests were performed at the 22Hz of input speed; the input gear 
has 37 teeth so the five harmonics of GM frequencies are 814 Hz, 
1628 Hz, 2442 Hz and 4070 Hz, respectively. 

Vibration, force and tacho signals were acquired simultaneously 
using a multichannel vibration analyzers NetdB and MVX and dbFA 
and XPR software from 01db-Metravib.

Fig. 1. Test rig used for vibration acquisition on faulty gearbox



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.16, No. 1, 2014 63

sciENcE aNd tEchNology

Vibration acquisition included the measurement of1: raw time 
waveforms, narrow band FFT in different frequency ranges with 3200 
lines of resolution (2 Hz–2 kHz, 2 Hz–5 kHz, 2 Hz–20 kHz), envelope 
spectra, time waveform obtained by TSA technique with 100 averages, 
Cepstrum and autocorrelation functions of the raw and TSA time wave-
forms. Based on these measurements 58 scalar features were extracted: 
RMS values of vibration velocity, RMS values of acceleration in sev-
eral frequency bands (10 Hz – 20 kHz, 2 Hz – 300 Hz, 2 Hz – 2 kHz, 
1 kHz – 2 kHz, 2 kHz – 6 kHz, 6 kHz – 10 kHz, 10  kHz – 20 kHz), 
01dB bearing defect factor2, Kurtosis values obtained from raw, band 
pass filtered (700 Hz – 1400 Hz) and TSA time waveforms, peak to 
peak values obtained from raw and TSA time waveforms, amplitudes 
of first five harmonics of GM, overall accelerations obtained from nar-
row bands around first five harmonics of GM (with bandwidth equals 
to five sidebands from each side of the central frequency – GM as 
shown on Figure 2.), amplitude extractions for first four harmonics of 
the roller elements bearing defect frequencies obtained from FFT and 
envelope spectra and equivalent A weighted noise levels.

SOFM [11] is an excellent tool for the visualization of high di-
mensional data. In this paper, the idea of using SOFM is the selection 
of most suitable input features for ANN, since the success of ANN 
pattern recognition is highly dependent on the choice of input fea-
tures. SOFM consists of neurons organized in a low dimensional grid 
where each neuron has a dimension that equals to the number of the 
input features. The map topology is dictated through neighboring re-
lations between the adjacent neurons. During the SOFM training, the 
weight vectors move across the data, the map gets organized and, in 
result, the neighboring neurons have similar weight vectors. SOFM 
testing was performed in SOM toolbox for Matlab environment [25]. 
The quality of clustering is analyzed using distance matrix, which 
visualizes the distances between adjacent neurons on the map: low 
values indicate clusters while higher values indicate the borders be-
tween existing clusters. On the other hand, component planes for each 
input feature show the values of that feature for each unit on the map. 
This makes them convenient for analyzing the influence of each input 
feature on the clustering.

For every gear pair tested, 100 measurements were acquired with 
10 minutes of delay between them. This resulted in the matrix of in-
put features with 300 rows. Input matrix with 58 scalar features was 
labeled and introduced to SOFM algorithm. As a results, a SOFM 

1  Definition of measurement parameters and frequency ranges was guided by additio-
nal tests, performed, but not presented in this paper – analysis of combination of gear 
and roller element bearing faults and development of automatic alghoritms for multiple 
faults identification.

2  Linear combination of peak and RMS values of acceleration.

with quantization error 1.8512, shown on figure 3, is generated. The 
quantization error is a measure of map resolution and is defined as an 
average distance between each data vector and its best matching unit. 
Figure 4 shows the map topology with the projections of input vectors 
and color coded labels (OKOK-red, NZOK-green, PZOK-blue).

Figure 5 shows component planes for bearing defect factor and 
the third harmonic of the GM. It is evident that the GM harmonic 
amplitude is a much better choice. Therefore, based on the analysis of  
the component planes, a reduction of the number of the input features 
is done. As a result from a total of 58 input features, 24 were cho-
sen: overal acceleration in the mentioned frequency bands, Kurtosis 
parameters of the raw and TSA time waveforms and their autocor-
relations, peak to peak values of the raw and TSA timewaveforms, A 
weighted noise levels, amplitudes of the GM harmonics and overall 
accelerations from narrow  bands around the GM components. As a 
results of the SOFM training with the dataset that consists 24 input 
features a SOFM with much smaller quatization error (0.9031) is gen-
erated – Figure 6.

MLP ANN utilized in this research had a classification task – to 
detect an exact gearbox defect type. Several architectures of MLP 
ANN were tested by the means of choosing the optimal network ar-
chitecture from the point of the number of neurons in the hidden layer, 

Fig. 2. 1xGM extraction and width for overall energy calculation in the fre-
quency band

Fig. 5. Component planes for bearing defect factor and 3rd GM harmonic

Fig. 6. Distance matrix for SOFM with 24 input features

Fig. 3. Distance matrix for SOFM with 58 
input features

Fig. 4. SOFM topology with 
color coded labels
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type of activation functions and type of the learning algorithm. For 
building, testing and training, Statistica Automatic Neural Networks 
package has been used. 210 input vectors (70% of the dataset) were 
used for training while 45 input vectors were used for cross verifi-
cation and testing. The software automatically determined network 
complexity. 20 networks were tested. The best network with 12 neu-
rons in hidden layer (MLP 24-12-3) and with excellent classification 
– 100% for each output case.

4. Case study

SOFM and ANN for automatic identification of rotating machin-
ery faults was implemented on the mine strip bucket wheel excavator 
SRs 1300 [23, 24], where an online system for the excavator surveil-
lance based on strain, stress and vibration measurement has been in-
stalled [13]. After the monitoring system was installed, several faults 
on the excavator were identified (roller element bearings faults on the 
input stage of the bucket wheel drive gearbox, roller element bearings 
fault on the motor of the first belt conveyor drive, gear failure at the 
third transmission stage of the first belt conveyor gearbox etc.). As 
a case study to be presented in this paper, a pinion failure of the belt 
conveyor gearbox is chosen. A belt drive is driven through a 450 kW 
motor working at 955 RPM. A three stage gearbox (shown on Figure 
7) is connected to the drive through rigid coupling. The numbers of 
teeth on gears and GM components in the term of orders of the input 
frequency are shown on table 1. 

Nearly two years after monitoring system installation and data 
collection, maintenance engineers reported a sudden increase in accel-
erations coming from the sensors mounted on the gearbox. Analysis 
of the frequency spectra revealed that the increase in overall accelera-
tions originates from the occurrence of GM of the third transmission 
stage (Figure 8). Also sidebands from the pinion’s drive are visible. 
Unfortunately, the initial measurement setup did not include accel-
erometers mounted at the bearings of the third transmission stage. 
Therefore, measurements from location L5, as the closest to the third 
stage, were chosen for the analysis. 

After the gearbox overhaul, the origin of high GM activity was 
found – missing teeth on the pinion gear at the third transmission 
stage. Initial measurement setup defined for this machine included 

amplitudes from first three harmonics of GM frequencies, overall 
accelerations in bands around GM and their difference calculated 
at each GM harmonic. Therefore, these values (for the GM on the 
third stage) were chosen as input features for SOFM and ANN. The 
occurrence of a fault was identified on trend plots of the mentioned 
features so it was easy to assign labels to the input dataset, which was 
consisted of 1011 individual records. Input matrix was introduced to 
the SOFM algorithm and a SOFM with quantization error 0.7273 was 
generated (Figures 9 and 10). As it can be seen from the figures the 
classification of the map neurons in two distinct clusters are more than 
satisfactory.

Result of the unlabeled dataset introduction to ANN algorithm re-
sulted in the ANN with excellent classification – 100% for each case. 
As in previous cases 70%, 15% and 15% of the total dataset was used 
for training, cross verification and testing of the ANN. The wining 
network had 4 neurons in the hidden layer (MLP 9-4-2).

5. Conclusion

Vibration analysis is a proven method for achieving a high relia-
bility of rotating machinery. However, for complex machines, such as 
gearboxes, evaluation of machine condition based on vibration meas-
urements could be a hard task and implementation of AI can help. In 
this paper, we demonstrated the use of SOFM and ANN for automatic 
identification of missing and worn teeth in gearboxes that work under 
steady loads. It is shown that SOFM can be used for preprocessing 
phase where a reduced set of vibration features should be defined as 
inputs in ANN algorithm. Excellent classification of existing faults 
was obtained by the use of ANN. Results indicated that overall accel-
eration values defined in frequency bands that cover GM components 
and amplitudes of GM are satisfactory features that can be used for 
automatic identification of gear faults.

Fig. 7. Belt drive gearbox scheme with the locations of accelerometers (L3, 
L4, L5)

Table 1. Number of teeth and GM frequencies for the analyzed gearbox

Number 
 of teeth

Transmission 
ratio GM [order]

z1 29
0.63043 29

z2 46

z3 57
0.40141 35.93478261

z4 142

z5 47
0.31973 11.89390692

z6 147

Fig. 8. Comparison of frequency spectra from the measurement point L5

Figure 9. Distance matrix for SOFM 
with 9 input features

Figure 10. SOFM topology with 
color coded labels (green-
OK, red-NOK)
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