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Abstract. This article is concerned with the study of the Borel summability of divergent
power series solutions for certain singular first-order linear partial differential equations of
nilpotent type. Our main purpose is to obtain conditions which coefficients of equations
should satisfy in order to ensure the Borel summability of divergent solutions. We will see
that there is a close affinity between the Borel summability of divergent solutions and global
analytic continuation properties for coefficients of equations.
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1. INTRODUCTION AND MAIN RESULT

In this paper, we study the following first-order linear partial differential equation
with two complex variables:

Pu(x, y) = f(x, y),

P = {1 + x2 + β(x, y)}yDx + {x+ b(x, y)}y2Dy + 1,
(1.1)

where x, y ∈ C, Dx = ∂/∂x, Dy = ∂/∂y. The coefficients β, b and f are holomorphic
at (x, y) = (0, 0) ∈ C2. Moreover, β and b satisfy

β(x, 0) ≡ b(x, 0) ≡ 0. (1.2)

The equation (1.1) is called of “nilpotent type” (cf. Remark 1.4). We expound the
incentive to consider (1.1) in Subsection 1.2.

First of all, let us consider the existence of formal power series solutions û(x, y) =∑∞
m,n=0 umnx

myn around (x, y) = (0, 0). Then, we can prove the unique existence
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of û(x, y). Moreover, we see that it takes the form of û(x, y) =
∑∞
n=0 un(x)yn, where

un(x) are holomorphic in a common neighborhood of x = 0. However, this formal
power series solution û(x, y) with respect to the y-variable diverges in general and the
rate of divergence is characterized in terms of the Gevrey index (cf. Definition 1.1,
(1)–(3) and Theorem 1.5). So, we are interested in the Borel summability of such a
divergent solution (cf. Definition 1.1, (4)–(6)). Our main purpose in this paper is to
obtain the conditions under which the divergent solution is Borel summable.

The content of this paper is as follows. In Subsection 1.1, we give the definitions
of divergent power series of the Gevrey type and Borel summability (Definition 1.1).
Some necessary and sufficient condition for the Borel summability is also stated (Def-
inition 1.2 and Theorem 1.3). In Subsection 1.2, we state the theorem which assures
the unique existence of divergent power series solutions (Theorem 1.5). Moreover, we
explain the incentive to consider (1.1). Theorems 1.3 and 1.5 play basic roles through-
out this paper. In Subsection 1.3, we state the main theorem (Theorem 1.6); that is,
we give conditions which the coefficients should satisfy in order to ensure the Borel
summability of the divergent solution. Some global analytic continuation properties
for coefficients will be required. In Subsection 1.4 we introduce literature studying
related topics. The proof of Theorem 1.6 is given in Sections 2–4. In Section 2, the
proof of Theorem 1.6 is reduced to that of the global solvability of some integral
equation (cf. (2.11) and Proposition 2.1). In Sections 3 and 4, we prove the global
solvability of that integral equation by applying an iteration method, and complete
the proof of Theorem 1.6.

1.1. DEFINITIONS AND FUNDAMENTAL RESULT

Definition 1.1.

(1) O[R] denotes the ring of holomorphic functions on the closed ball B(R) =
{x ∈ C; |x| ≤ R}, where R is a positive number.

(2) The ring of formal power series in y (∈ C) over the ring O[R] is denoted by
O[R][[y]]:

O[R][[y]] =

{
û(x, y) =

∞∑

n=0

un(x)yn; un(x) ∈ O[R]

}
. (1.3)

(3) We say that û(x, y) =
∑∞
n=0 un(x)yn (∈ O[R][[y]]) belongs to O[R][[y]]2 if there

exist some positive constants C and K such that

max
|x|≤R

|un(x)| ≤ CKnn! (1.4)

for all n = 0, 1, 2, . . .. The suffix 2 of O[R][[y]]2 expresses the Gevrey index of
power series. Elements of O[R][[y]]2 are divergent power series in general.

(4) For θ ∈ R, κ > 0 and 0 < ρ ≤ +∞, the sector S(θ, κ, ρ) in the universal covering
space of C \ {0} is defined as

S(θ, κ, ρ) =

{
y; |arg (y)− θ| < κ

2
, 0 < |y| < ρ

}
. (1.5)
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We refer to θ, κ and ρ as the bisecting direction, the opening angle and the radius
of S(θ, κ, ρ), respectively.

(5) Let û(x, y) =
∑∞
n=0 un(x)yn ∈ O[R][[y]]2 and let u(x, y) be a holomorphic func-

tion on X = B(R)×S(θ, κ, ρ). Then we say that u(x, y) has û(x, y) as an asymp-
totic expansion of the Gevrey order 2 in X if the following asymptotic estimates
hold: there exist some positive constants C and K such that

max
|x|≤R

∣∣∣∣∣u(x, y)−
N−1∑

n=0

un(x)yn

∣∣∣∣∣ ≤ CK
NN !|y|N (1.6)

for all y ∈ S(θ, κ, ρ) and N = 1, 2, . . .. Then we write this as

u(x, y) ∼=2 û(x, y) in X.

(6) Let û(x, y) =
∑∞
n=0 un(x)yn ∈ O[R][[y]]2. We say that û(x, y) is Borel summable

in a direction θ if there exists a holomorphic function u(x, y) on X = B(r) ×
S(θ, κ, ρ) for some r (0 < r ≤ R), κ > π and ρ (0 < ρ ≤ +∞) which satisfies
u(x, y) ∼=2 û(x, y) in X. A given divergent power series û(x, y) ∈ O[R][[y]]2 is not
necessarily Borel summable in general. However, if û(x, y) is Borel summable in
a direction θ, then we see that the above holomorphic function u(x, y) is unique
(cf. Balser [1, 3]). So we call this unique u(x, y) the Borel sum of û(x, y) in a
direction θ.

As mentioned above, a given divergent power series û(x, y) ∈ O[R][[y]]2 is not
necessarily Borel summable. When we would like to check the Borel summability of
a given û(x, y), the following Theorem 1.3 is used frequently. Theorem 1.3 gives the
necessary and sufficient condition for the Borel summability, and gives the explicit
formula of the Borel sum.

Definition 1.2. For û(x, y) =
∑∞
n=0 un(x)yn ∈ O[R][[y]]2, we define the convergent

power series B̂[û](x, η) in a neighborhood of (x, η) = (0, 0) as

B̂[û](x, η) =

∞∑

n=0

un(x)
ηn

n!
. (1.7)

We call B̂[û](x, η) the formal Borel transform of û(x, y).

Theorem 1.3 ([1, 3]). For a given formal power series û(x, y) =
∑∞
n=0 un(x)yn ∈

O[R][[y]]2, let us put v(x, η) = B̂[û](x, η). Then the following two statements are
equivalent:

(i) û(x, y) is Borel summable in a direction θ.
(ii) v(x, η) can be continued analytically to B(r0) × S(θ, κ0,+∞) for some r0 > 0

and κ0 > 0, and has the following exponential growth estimate for some positive
constants C and δ:

max
|x|≤r0

|v(x, η)| ≤ Ceδ|η|, η ∈ S(θ, κ0,+∞). (1.8)



598 Masaki Hibino

When condition (i) or (ii) (therefore both) is satisfied, the Borel sum u(x, y) in the
direction θ is given by

u(x, y) =
1

y

∞eiθ∫

0

e−η/yv(x, η) dη. (1.9)

Theorem 1.3 plays a significant role in the proof of the main theorem (Theo-
rem 1.6) of this paper. Throughout this paper, we call condition (ii) in Theorem 1.3
condition (BS).

1.2. INCENTIVE

In this subsection, we state the problem, precisely. First, we consider the problem in
a more general framework. Let us consider the following equation:

{A(x, y)Dx +B(x, y)Dy + 1}u(x, y) = F (x, y), (1.10)

where all coefficients are holomorphic at the origin. Moreover, we assume the following
three fundamental conditions:

A(x, 0) ≡ 0, (1.11)
∂A

∂y
(0, 0) 6= 0, (1.12)

B(x, 0) ≡ ∂B

∂y
(x, 0) ≡ 0. (1.13)

Remark 1.4. Conditions (1.11) and (1.13) imply A(0, 0) = B(0, 0) = 0, which means
that (1.10) is singular at the origin. Moreover, it follows from (1.11)–(1.13) that the
Jacobi matrix ∂(A,B)/∂(x, y)|(x,y)=(0,0) is a nilpotent matrix

(
0 (∂A/∂y)(0, 0)
0 0

)
. (1.14)

In this sense, our equation is called of nilpotent type.

Now, on the existence of formal power series solutions, we already know the fol-
lowing fact, which will be fundamental in the argument below.

Theorem 1.5 ([6]). Let us assume (1.11)–(1.13). Then (1.10) has a unique formal
power series solution û(x, y) =

∑∞
n=0 un(x)yn ∈ O[R][[y]]2 for some R > 0.

A short proof of Theorem 1.5 is also given in [7]. On the basis of Theorem 1.5,
we can study the coming problem; the Borel summability of the formal solution:
When is the formal solution û(x, y) Borel summable in a given bisecting direction θ,
that is, when does the formal Borel transform v(x, η) = B̂[û](x, η) of û(x, y) satisfy
condition (BS)?
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Hereafter, we consider the above problem. To begin with, let us rewrite (1.10)
to state the main result. It follows from (1.11)–(1.13) that (1.10) is rewritten in the
following form:

[{α(x) + β(x, y)}yDx + {a(x) + b(x, y)}y2Dy + 1]u(x, y) = f(x, y), (1.15)

where each coefficient is holomorphic at the origin. Moreover, α, β and b satisfy

α(0) 6= 0, (1.16)
β(x, 0) ≡ b(x, 0) ≡ 0. (1.17)

In [7, 8], we dealt with the case where a(x) ≡ a (constant), and obtained the
conditions under which the formal solution is Borel summable. In [10,11], we studied
the case where α(x) = α0 + α1x (cf. also [9]). So, in this paper we study the case
where

α(x) = 1 + x2, a(x) = x, (1.18)

that is, we consider (1.1) satisfying (1.2). The main purpose of this paper is to give
the conditions which coefficients β, b and f of (1.1) should satisfy in order to assure
the Borel summability of the formal solution in a given direction θ.

1.3. MAIN THEOREM

Assumptions: First of all, let us define the region Ωr,θ,κ by

Ωr,θ,κ = {− tan [arcsin (τ)]; τ ∈ B(r) ∪ S(θ, κ,+∞)}. (1.19)

In order to ensure the well-definedness of Ωr,θ,κ, we assume the following:

(A1) θ 6= 0, θ 6= π.

Under (A1) we obtain the following fact: by taking suitably small r > 0 and κ > 0, it
holds that ∣∣cos [arcsin (τ)]

∣∣ ≥ M (τ ∈ B(r) ∪ S(θ, κ,+∞)) (1.20)

for some positive constant M. This implies the well-definedness of Ωr,θ,κ. Hereafter,
we always take such r > 0 and κ > 0.

Next, for the inhomogeneity term f(x, y) we assume the following:

(A2) f(x, y) can be continued analytically to Ωr,θ,κ × {y ∈ C; |y| ≤ c} for some
c > 0. Moreover, it has the following growth estimate there. There exist some positive
constants C and δ such that

max
|y|≤c

|f(x, y)| ≤ C exp [δ|sin (arctanx)|], x ∈ Ωr,θ,κ. (1.21)

Finally, we impose the following conditions for the coefficients β(x, y) and b(x, y):
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(A3) β(x, y) and b(x, y) can be continued analytically to Ωr,θ,κ × {y ∈ C; |y| ≤ c}.
Moreover, there exist some positive constants K, L > 0 and p > 1, which are inde-
pendent of m, such that

∣∣∣∣∣
1

1 + x2
∂mβ

∂ym
(x, 0)

∣∣∣∣∣ ≤ KL
mm!|cos (arctanx)|m, (1.22)

∣∣∣∣∣(1 + x2)
3/2 ∂

∂x

{
1

1 + x2
∂mβ

∂ym
(x, 0)

}∣∣∣∣∣ ≤ KL
mm!|cos (arctanx)|m, (1.23)

∣∣∣∣∣
x

1 + x2
∂mβ

∂ym
(x, 0)

∣∣∣∣∣ ≤
KLmm!|cos (arctanx)|m+1

{1 + |sin (arctanx)|}p , (1.24)

∣∣∣∣∣
∂mb

∂ym
(x, 0)

∣∣∣∣∣ ≤
KLmm!|cos (arctanx)|m+1

{1 + |sin (arctanx)|}p (1.25)

for x ∈ Ωr,θ,κ, and m = 1, 2, . . ..
Let us state the main theorem in this paper.

Theorem 1.6. Under assumptions (A1)–(A3) the formal solution û(x, y) of (1.1) is
Borel summable in the direction θ.

1.4. SOME REMARKS ON RELATED TOPICS

In the theory of ordinary differential equations, there are many studies concerning
the summability of divergent power series solutions, and we can see many significant
results in Balser’s book [1, 3] (cf. also Malgrange [13]).

On the other hand, in the theory of partial differential equations, there are not so
many studies. The first contribution is rendered by Lutz-Miyake-Schäfke [12], where
complex heat equations are dealt with. Balser [2,4], Balser and Miyake [5] and Miyake
[14] generalized the result in [12]. In Ōuchi [15] also, we can find some interesting
results for greatly general linear partial differential equations. We remark that our
equation (1.1) is a different type of equation from theirs, and that in the above articles
we can see quite different phenomena from ours.

2. PRELIMINARIES TO PROOF

By Theorem 1.3, in order to prove Theorem 1.6, it is sufficient to prove that the
formal Borel transform v(x, η) = B̂[û](x, η) of the formal solution û(x, y) satisfies
condition (BS) under assumptions (A1)–(A3). In order to do that, in Subsection 2.1
we write down the equation which B̂[û](x, η) should satisfy. Some integro-differential
equation (cf. (2.4)) will be obtained. Furthermore, in Subsection 2.2, we transform
that intego-differential equation into some integral equation.
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2.1. FORMAL BOREL TRANSFORM OF EQUATION

Let us operate the formal Borel transform to (1.1). Then we obtain the following
equality:

(1 + x2)

η∫

0

B̂[Dxû](x, t) dt+

η∫

0

B̂[β](x, η − t)B̂[Dxû](x, t) dt

+ x

η∫

0

B̂[yDyû](x, t) dt+

η∫

0

B̂[b](x, η − t)B̂[yDyû](x, t) dt+ B̂[û](x, η)

= B̂[f ](x, η),

(2.1)

where B̂[β](x, η), B̂[b](x, η) and B̂[f ](x, η) are the formal Borel transforms of
β(x, y) =

∑∞
n=1 βn(x)yn, b(x, y) =

∑∞
n=1 bn(x)yn and f(x, y) =

∑∞
n=0 fn(x)yn,

that is,

B̂[β](x, η) =
∞∑

n=1

βn(x)
ηn

n!
, B̂[b](x, η) =

∞∑

n=1

bn(x)
ηn

n!
, B̂[f ](x, η) =

∞∑

n=0

fn(x)
ηn

n!
.

(2.1) is obtained by applying the following equality:

B̂[ym+n+1](η) =
1

(m+ n+ 1)!
ηm+n+1 = B(m+ 1, n+ 1)

ηm+n+1

m!n!
(Beta integral)

=

1∫

0

(1− s)msn ds · η
m+n+1

m!n!
=

η∫

0

(η − t)mtn dt · 1

m!n!

=

η∫

0

B̂[ym](η − t)B̂[yn](t) dt.

Next, let us calculate B̂[Dxû](x, η) and B̂[yDyû](x, η) in (2.1). It is clear that
B̂[Dxû](x, η) = DxB̂[û](x, η). On B̂[yDyû](x, η), it follows from the same argument as

above that B̂[yDyû](x, η) =
η∫
0

B̂[Dyû](x, t) dt. Moreover, by noting the commutative

diagram

yn
formal Borel tr.−−−−−−−−−−→ ηn

n!

Dy

y
yDηηDη

nyn−1 −−−−−−−−−−→
formal Borel tr.

n
ηn−1

(n− 1)!

we have B̂[Dyû](x, η) = DηηDηB̂[û](x, η). Hence, it holds that

B̂[yDyû](x, η) =

η∫

0

B̂[Dyû](x, t) dt =

η∫

0

DttDtB̂[u](x, t) dt = ηDηB̂[û](x, η). (2.2)
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(The Euler operator is transformed to the Euler operator.) By adopting (2.2) we
obtain

η∫

0

B̂[b](x, η − t)B̂[yDyû](x, t) dt

=

η∫

0

B̂[b](x, η − t) · t ·DtB̂[û](x, t) dt

=
[
B̂[b](x, η − t) · t · B̂[û](x, t)

]t=η
t=0
−

η∫

0

∂

∂t
{B̂[b](x, η − t) · t} · B̂[û](x, t) dt

=

η∫

0

B̂[b]η(x, η − t) · t · B̂[û](x, t) dt−
η∫

0

B̂[b](x, η − t)B̂[û](x, t) dt.

Therefore, we see that B̂[û](x, η) is a solution of the following equation:

(1 + x2)

η∫

0

vx(x, t) dt+

η∫

0

B̂[β](x, η − t)vx(x, t) dt+ x

η∫

0

t · vη(x, t) dt

+

η∫

0

B̂[b]η(x, η − t) · t · v(x, t) dt−
η∫

0

B̂[b](x, η − t)v(x, t) dt+ v(x, η)

= B̂[f ](x, η).

(2.3)

Finally, let us operate Dη to (2.3) from the left. Then we see that B̂[û](x, η) is a
solution of the following initial value problem:





L v(x, η) =−
η∫

0

B̂[β]η(x, η − t)vx(x, t) dt− B̂[b]η(x, 0) · η · v(x, η)

−
η∫

0

B̂[b]ηη(x, η − t) · t · v(x, t) dt+

η∫

0

B̂[b]η(x, η − t)v(x, t) dt

+ g(x, η),

v(x, 0) = f(x, 0),

(2.4)

where L is the first-order linear partial differential operator defined by

L = (1 + x2)Dx + (1 + xη)Dη, (2.5)
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and g(x, η) = B̂[f ]η(x, η). It is easy to prove that B̂[û](x, η) is the unique locally
holomorphic solution of (2.4). Hence, the proof of Theorem 1.6 has been reduced
to that of the following fact: the solution v(x, η) of (2.4) satisfies (BS). However,
we do not deal with the integro-differential equation (2.4) immediately. In the next
subsection, we transform (2.4) into the integral equation.

2.2. TRANSFORMATION TO INTEGRAL EQUATION

In order to transform (2.4) into the integral equation, we apply the following formula.
The solution V (x, η) of the initial value problem of the following first-order linear
partial differential equation

{
L V (x, η) = k(x, η),

V (x, 0) = l(x)
(2.6)

is given by

V (x, η) = l(− tan (A (x, η)))

+

η∫

0

k(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz,
(2.7)

where

A (x, η) = arcsin {− sin (arctanx) + cos (arctanx) · η}, (2.8)

E (x, η) =
cos (arctanx)

cos (A (x, η))
. (2.9)

We explain the derivation of the formula (2.7) in Section A. By (2.7), we see that
(2.4) is equivalent to the following equation:

v(x, η) = f(− tan (A (x, η)), 0)

+

η∫

0

g(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz

+

4∑

i=1

Iiv(x, η),
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where each operator Ii (i = 1–4) is given by

I1v(x, η) = −
η∫

0

E (x,η−z)·z∫

0

B̂[β]η(− tan (A (x, η − z)),E (x, η − z) · z − t)

× vx(− tan (A (x, η − z)), t) dtE (x, η − z) dz,

I2v(x, η) = −
η∫

0

B̂[b]η(− tan (A (x, η − z)), 0) · E (x, η − z) · z

× v(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz,

I3v(x, η) = −
η∫

0

E (x,η−z)·z∫

0

B̂[b]ηη(− tan (A (x, η − z)),E (x, η − z) · z − t) · t

× v(− tan (A (x, η − z)), t) dtE (x, η − z) dz,

I4v(x, η) =

η∫

0

E (x,η−z)·z∫

0

B̂[b]η(− tan (A (x, η − z)),E (x, η − z) · z − t)

× v(− tan (A (x, η − z)), t) dtE (x, η − z) dz.

Furthermore, for I1v(x, η), I3v(x, η) and I4v(x, η), we practice an integration by
substitution

t(s) = E (x, η − z) · s. (2.10)

In addition, we transform I1v(x, η) as follows: Let us apply equality Aη(x, η) = E (x, η)

and Eη(x, η) = E (x, η)
2 · tan (A (x, η)). By an integration by substitution (2.10), we

have

I1v(x, η) = −
η∫

0

z∫

0

B̂[β]η(− tan (A (x, η − z)),E (x, η − z) · (z − s))

× vx(− tan (A (x, η − z)),E (x, η − z) · s) dsE (x, η − z)2 dz
= I1′v(x, η) + I1′′v(x, η),
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where

I1′v(x, η)

= −
η∫

0

z∫

0

cos2 (A (x, η − z)) · B̂[β]η(− tan (A (x, η − z)),E (x, η − z) · (z − s))

× E (x, η − z) · ∂
∂z

{
v
(
− tan (A (x, η − z)),E (x, η − z) · s

)}
ds dz,

I1′′v(x, η)

= −
η∫

0

z∫

0

cos2 (A (x, η − z)) · tan (A (x, η − z)) · s

× B̂[β]η(− tan (A (x, η − z)),E (x, η − z) · (z − s))

× E (x, η − z)2 · ∂
∂s

{
v(− tan (A (x, η − z)),E (x, η − z) · s)

}
ds dz.

By changing the order of integration, we write I1′v(x, η) as

−
η∫

0

z∫

0

. . . ds dz = −
η∫

0

η∫

s

. . . dz ds.

Thereupon, we can transform I1′v(x, η) by an integration by parts. Thereafter, let
us change the order of integration again. I1′′v(x, η) can be transformed directly by
an integration by parts. Ultimately, we see that (2.4) is equivalent to the following
integral equation:

v(x, η) = f(− tan (A (x, η)), 0)

+

η∫

0

g(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz

+
8∑

i=1

Iiv(x, η),

(2.11)
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where

I1v(x, η) = − 1

1 + x2

η∫

0

B̂[β]η(x, η − z)v(x, z) dz,

I2v(x, η) =

η∫

0

cos2 (A (x, η − z)) · {1− tan (A (x, η − z)) · E (x, η − z) · z}

× B̂[β]η(− tan (A (x, η − z)), 0)

× v(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz,

I3v(x, η) =

η∫

0

z∫

0

cos2 (A (x, η − z)) · {1− tan (A (x, η − z)) · E (x, η − z) · z}

× B̂[β]ηη(− tan (A (x, η − z)),E (x, η − z) · (z − s))
× v(− tan (A (x, η − z)),E (x, η − z) · s) · E (x, η − z)2 ds dz,

I4v(x, η) = 2

η∫

0

z∫

0

cos2 (A (x, η − z)) · tan (A (x, η − z))

× B̂[β]η(− tan (A (x, η − z)),E (x, η − z) · (z − s))
× v(− tan (A (x, η − z)),E (x, η − z) · s) · E (x, η − z)2 ds dz,

I5v(x, η) =

η∫

0

z∫

0

B̂[β]xη(− tan (A (x, η − z)),E (x, η − z) · (z − s))

× v(− tan (A (x, η − z)),E (x, η − z) · s) · E (x, η − z)2 ds dz,
I6v(x, η) = I2v(x, η)

= −
η∫

0

z · B̂[b]η(− tan (A (x, η − z)), 0)

× v(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z)2 dz,
I7v(x, η) = I3v(x, η)

= −
η∫

0

z∫

0

s · B̂[b]ηη(− tan (A (x, η − z)),E (x, η − z) · (z − s))

× v(− tan (A (x, η − z)),E (x, η − z) · s) · E (x, η − z)3 ds dz,
I8v(x, η) = I4v(x, η)

=

η∫

0

z∫

0

B̂[b]η(− tan (A (x, η − z)),E (x, η − z) · (z − s))

× v(− tan (A (x, η − z)),E (x, η − z) · s) · E (x, η − z)2 ds dz.
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We note that I1v(x, η) =
∑5
i=1 Iiv(x, η).

By the above argument, the proof of Theorem 1.6 has been reduced to that of the
following proposition.

Proposition 2.1. The solution v(x, η) of (2.11) satisfies condition (BS).

3. PROOF OF PROPOSITION 2.1

In order to prove Proposition 2.1, we employ the iteration method. Let us define
{vn(x, η)}∞n=0 inductively as follows:

v0(x, η) = f(− tan (A (x, η)), 0)

+

η∫

0

g(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz,

(3.1)

vn+1(x, η) = v0(x, η) +
8∑

i=1

Iivn(x, η) (n ≥ 0). (3.2)

Next, we define {wn(x, η)}∞n=0 as w0(x, η) = v0(x, η) and wn(x, η) = vn(x, η) −
vn−1(x, η) (n ≥ 1). Furthermore, we define {Wn(x, η, t)}∞n=0 as

Wn(x, η, t) = wn(− tan (A (x, η − t)),E (x, η − t) · t). (3.3)

Here, we break the proof, and provide the notation needed in the key lemma later.
We can take r0 > 0, κ0 > 0 and l > 0 such that

|x| ≤ r0, ζ ∈ S(θ, κ0,+∞)− leiθ
=⇒ − sin (arctanx) + cos (arctanx) · ζ ∈ B(r) ∪ S(θ, κ,+∞),

(3.4)

where r > 0 and κ > 0 are the constants given in Assumptions (Subsection 1.3).
Hence, it holds that

|x| ≤ r0, ζ ∈ S(θ, κ0,+∞)− leiθ =⇒ A (x, ζ) ∈ arcsin (B(r) ∪ S(θ, κ,+∞)).
(3.5)

Consequently, we obtain

|x| ≤ r0, ζ ∈ S(θ, κ0,+∞)− leiθ =⇒
{
|cos (A (x, ζ))| ≥ M and
− tan (A (x, ζ)) ∈ Ωr,θ,κ,

(3.6)
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where M is the constant given in (1.20). It follows from (1.22)–(1.25) and (3.6) that
there exist some positive constants C0 and M0 satisfying:




max
|x|≤r0

∣∣∣cos2 (A (x, ζ)) · βm(− tan (A (x, ζ))) · E (x, ζ)
m
∣∣∣ ≤ C0M0

m,

max
|x|≤r0

∣∣∣∣∣
∂

∂ζ

{
cos2 (A (x, ζ)) · βm(− tan (A (x, ζ)))

}
· E (x, ζ)

m

∣∣∣∣∣ ≤ C0M0
m,

max
|x|≤r0

∣∣∣cos2 (A (x, ζ)) · tan (A (x, ζ)) · βm(− tan (A (x, ζ))) · E (x, ζ)
m+1

∣∣∣

≤ C0M0
m

(1 + |ζ|)p ,

max
|x|≤r0

∣∣∣bm(− tan (A (x, ζ))) · E (x, ζ)
m+1

∣∣∣ ≤ C0M0
m

(1 + |ζ|)p (≤ C0M0
m)

(3.7)
for all m = 1, 2, . . . and all ζ ∈ S(θ, κ0,+∞)− l′eiθ, where l′ = l/2.

Next, we give the following definition.

Definition 3.1.

(1) For λ ≥ 0 and ρ > 0, Uρ[0, λ] denotes the ρ-neighborhood of [0, λ] in C. Precisely,

Uρ[0, λ] = {τ ∈ C; dist (τ, [0, λ]) ≡ inf {|τ − σ|; σ ∈ [0, λ]} < ρ}.

(2) For η ∈ C, we define the function Gη as

Gη(τ) = τei arg (η), τ ∈ C,

and define Gη and Gηρ as follows:

Gη = {Gη(R) ∈ C; 0 ≤ R ≤ |η|},
Gηρ = {Gη(τ) ∈ C; τ ∈ Uρ[0, |η|]}.

We remark that Gη is the segment from 0 to η and that Gηρ is the ρ-neighborhood
of Gη.

Under these preparations let us take a monotonically decreasing positive sequence
(ln)

∞
n=0 so that

l′ =
∞∑

n=0

ln. (3.8)

Finally, we define (ρn)
∞
n=0 as follows:

ρ0 = dist (S(θ, κ0,+∞)− (l′ − l0)eiθ, ∂(S(θ, κ0,+∞)− l′eiθ)),

ρn = dist

(
S(θ, κ0,+∞)−

(
l′ −

n∑

j=0

lj

)
eiθ, ∂(S(θ, κ0,+∞)−

(
l′ −

n−1∑

j=0

lj

)
eiθ)

)

(n ≥ 1),
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where dist (A,B) = inf {|a− b|; a ∈ A, b ∈ B}, and ∂A means the boundary of A.
Then we obtain the following lemma.

Lemma 3.2. Wn(x, η, t) is continued analytically to
{

(x, η, t) ∈ C3; |x| ≤ r0, η ∈ S(θ, κ0,+∞)−
(
l′ −

n∑

j=0

lj

)
eiθ, t ∈ Gηρn

}
.

Moreover, on
{

(x, η, t) ∈ C3; |x| ≤ r0, η ∈ S(θ, κ0,+∞)−
(
l′ −

n∑

j=0

lj

)
eiθ, t ∈ Gη

}

we have the following estimate. For some positive constants C1 > 0 and δ1 >
max {1,M0},

|Wn(x, η,Gη(R))| ≤ C1e
δ1|η|M1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
Rn

n!
,

0 ≤ R ≤ |η|,
(3.9)

where

M1 = 10C0

∞∑

m=1

M0
m

δ1
m−1 .

We prove Lemma 3.2 in Section 4. For the present, we admit it and let us accom-
plish the proof of Proposition 2.1.

Proof of Proposition 2.1. By Lemma 3.2, we see that wn(x, η) (= Wn(x, η, η)) is con-
tinued analytically to B(r0)× {S(θ, κ0,+∞)− (l′ −∑n

j=0 lj)e
iθ} with the estimate

|wn(x, η)| = |Wn(x, η,Gη(|η|))| ≤ C1e
δ1|η|M1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k

}
|η|n
n!

= C1e
δ1|η|M1

n

(
1 +

1

p− 1

)n
|η|n
n!

.

Hence, on B(r0)× S(θ, κ0,+∞) we obtain
∞∑

n=0

|wn(x, η)| ≤ C1e
δ1|η|

∞∑

n=0

M1
n

(
1 +

1

p− 1

)n
|η|n
n!

= C1e
δ2|η|,

where δ2 = δ1 + M1(1 + 1/(p − 1)). This shows that vn(x, η) (=
∑n
k=0 wk(x, η))

converges to the solution V (x, η) of (2.11) uniformly on B(r0) × S(θ, κ0,+∞). Con-
sequently, V (x, η) is an analytic continuation of v(x, η), and it holds that

max
|x|≤r0

|V (x, η)| ≤ C1e
δ2|η|, η ∈ S(θ, κ0,+∞).

It follows from the above argument that v(x, η) satisfies (BS). This completes the
proof of Proposition 2.1.
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4. PROOF OF LEMMA 3.2

Let us prove Lemma 3.2. It is proved by induction with respect to n.

Proof of Lemma 3.2. First we consider the case n = 0. Let us apply equality

A (− tan (A (x, η − t)),E (x, η − t) · t) = A (x, η),

A (− tan (A (x, η − t)),E (x, η − t) · (t− z)) = A (x, η − z),

E (− tan (A (x, η − t)),E (x, η − t) · (t− z)) =
E (x, η − z)
E (x, η − t) .

Then, by (3.1) and (3.3), we see that W0(x, η, t) has the following form:

W0(x, η, t) = f(− tan (A (x, η)), 0)

+

t∫

0

g(− tan (A (x, η − z)),E (x, η − z) · z) · E (x, η − z) dz

≡ J1(x, η, t) + J2(x, η, t).

Before proving the lemma forW0, we remark the following. It follows from assumption
(A2) and Cauchy’s integral formula that g(x, η) is analytic on Ωr,θ,κ × C with the
estimate

|g(x, η)| ≤ C ′ exp [δ|sin (arctanx)|] · eδ′|η|, (x, η) ∈ Ωr,θ,κ × C (4.1)

for some positive constants C ′ and δ′.
Let us prove that J1(x, η, t) and J2(x, η, t) are well-defined on

{(x, η, t); |x| ≤ r0, η ∈ S(θ, κ0,+∞)− (l′ − l0)eiθ, t ∈ Gηρ0}.

Let |x| ≤ r0, η ∈ S(θ, κ0,+∞) − (l′ − l0)eiθ, t ∈ Gηρ0 , and let us write t ∈ Gηρ0 as
t = Gη(τ) (τ ∈ Uρ0 [0, |η|]).

Well-definedness of J1(x, η,Gη(τ)): it is clear from assumption (A2) and (3.6)
(note that S(θ, κ0,+∞)− (l′ − l0)eiθ ⊂ S(θ, κ0,+∞)− l′eiθ ⊂ S(θ, κ0,+∞)− leiθ).

Well-definedness of J2(x, η,Gη(τ)): in the integral expression of J2(x, η,Gη(τ)),
by taking a path of integration as

z(σ) = σei arg (η) (σ ∈ [0, τ ]), (4.2)

where [0, τ ] is the segment from 0 to τ , it holds that η − z(σ) ∈ S(θ, κ0,+∞) −
l′eiθ (⊂ S(θ, κ0,+∞)− leiθ). Hence, from the above remark and (3.6) we obtain the
well-definedness of J2(x, η,Gη(τ)).

Therefore, W0(x, η, t) is well-defined on

{(x, η, t); |x| ≤ r0, η ∈ S(θ, κ0,+∞)− (l′ − l0)eiθ, t ∈ Gηρ0}.

Moreover, on

{(x, η, t); |x| ≤ r0, η ∈ S(θ, κ0,+∞)− (l′ − l0)eiθ, t ∈ Gη}
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we have the following representation:

W0(x, η,Gη(R))

= f(− tan (A (x, η)), 0)

+

R∫

0

g(− tan (A (x, (|η| −R1)ei arg (η))),E (x, (|η| −R1)ei arg (η)) ·R1e
i arg (η))

× E (x, (|η| −R1)ei arg (η)) · ei arg (η) dR1

≡ J1(x, η,R) + J2(x, η,R).

Let us estimate each J1(x, η,R) and J2(x, η,R).
On J1(x, η,R): by (1.21), we have

|J1(x, η,R)| = |f(− tan (A (x, η)), 0)| ≤ C exp [δ|sin (A (x, η))|]
= C exp [δ|− sin (arctanx) + cos (arctanx) · η|]
≤ C exp [δ|sin (arctanx)|] · exp [δ|cos (arctanx)| · |η|] ≤ C ′′eδ1|η|,

where C ′′ = C exp [δmax|x|≤r0 |sin (arctanx)|] and δ1 = δmax|x|≤r0 |cos (arctanx)|.
On J2(x, η,R): it follows from (4.1) that

|g(− tan (A (x, (|η| −R1)ei arg (η)),E (x, (|η| −R1)ei arg (η)) ·R1e
i arg (η))|

≤ C ′ exp [δ|sin (A (x, (|η| −R1)ei arg (η)))|]
× exp [δ′|E (x, (|η| −R1)ei arg (η)) ·R1e

i arg (η)|]
≤ C ′′′eδ1(|η|−R1) · exp [δ′|E (x, (|η| −R1)ei arg (η))|R1],

where C ′′′ = C ′ exp [δmax|x|≤r0 |sin (arctanx)|]. We remark that

max
|x|≤r0

|E (x, (|η| −R1)ei arg (η))| ≤M ≡ 1

M
max
|x|≤r0

|cos (arctanx)| (4.3)

holds. Therefore, we have

|g(− tan (A (x, (|η| −R1)ei arg (η)),E (x, (|η| −R1)ei arg (η)) ·R1e
i arg (η))|

≤ C ′′′eδ1|η|e−(δ1−δ′M)R1 .

Here we may take δ > 0 so large that δ′′ ≡ δ1 − δ′M = δmax|x|≤r0 |cos (arctanx)| −
δ′M > 0. Hence, we obtain

|J2(x, η,R)| ≤ C ′′′Meδ1|η|
R∫

0

e−δ
′′R1 dR1 ≤

C ′′′M
δ′′

eδ1|η|.

By the above argument, it holds that

|W0(x, η,Gη(R))| ≤ C1e
δ1|η|,
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where C1 = C ′′ + (C ′′′M)/δ′′. We may take δ so large that δ1 > max {1,M0}. There-
fore, the lemma has been proved for W0.

Next, we assume that the claim of the lemma is proved up to n and prove it
for n+ 1.

By (3.2) and (3.3), we have the following relation between Wn and Wn+1:

Wn+1(x, η, t) =

7∑

i=1

IiWn(x, η, t), (4.4)

where

I1Wn(x, η, t) = (I1wn)(− tan (A (x, η − t)),E (x, η − t) · t)

= − cos2 (A (x, η − t))
t∫

0

B̂[β]η(− tan (A (x, η − t)),E (x, η − t) · (t− z))

×Wn(x, η − t+ z, z) · E (x, η − t) dz,

I2Wn(x, η, t) = (I2wn)(− tan (A (x, η − t)),E (x, η − t) · t)

=

t∫

0

cos2 (A (x, η − z)) · {1− tan (A (x, η − z)) · E (x, η − z) · z}

× B̂[β]η(− tan (A (x, η − z)), 0) ·Wn(x, η, z) · E (x, η − z) dz,

I3Wn(x, η, t) = (I3wn)(− tan (A (x, η − t)),E (x, η − t) · t)

=

t∫

0

z∫

0

cos2 (A (x, η − z)) · {1− tan (A (x, η − z)) · E (x, η − z) · z}

× B̂[β]ηη(− tan (A (x, η − z)),E (x, η − z) · (z − s))
×Wn(x, η − z + s, s) · E (x, η − z)2 ds dz,

I4Wn(x, η, t) = (I4wn + I5wn)(− tan (A (x, η − t)),E (x, η − t) · t)

= −
t∫

0

z∫

0

∂

∂ζ

{
cos2 (A (x, ζ))

× B̂[β]η(− tan (A (x, ζ)),E (x, η − z) · (z − s))
}∣∣∣∣∣
ζ=η−z

×Wn(x, η − z + s, s) · E (x, η − z) ds dz,
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I5Wn(x, η, t) = (I6wn)(− tan (A (x, η − t)),E (x, η − t) · t)

= −
t∫

0

z · B̂[b]η(− tan (A (x, η − z)), 0) ·Wn(x, η, z) · E (x, η − z)2 dz,

I6Wn(x, η, t) = (I7wn)(− tan (A (x, η − t)),E (x, η − t) · t)

= −
t∫

0

z∫

0

s · B̂[b]ηη(− tan (A (x, η − z)),E (x, η − z) · (z − s))

×Wn(x, η − z + s, s) · E (x, η − z)3 ds dz,
I7Wn(x, η, t) = (I8wn)(− tan (A (x, η − t)),A (x, η − t) · t)

=

t∫

0

z∫

0

B̂[b]η(− tan (A (x, η − z)),E (x, η − z) · (z − s))

×Wn(x, η − z + s, s) · E (x, η − z)2 ds dz.

Let us prove each IiWn(x, η, t) (i = 1, . . . , 7) is well-defined on

{(x, η, t); |x| ≤ r0, η ∈ S(θ, κ0,+∞)− (l′ −∑n+1
j=0 lj)e

iθ, t ∈ Gηρn+1
}.

Let |x| ≤ r0, η ∈ S(θ, κ0,+∞)−(l′−∑n+1
j=0 lj)e

iθ, t ∈ Gηρn+1
, and let us write t ∈ Gηρn+1

as t = Gη(τ) (τ ∈ Uρn+1
[0, |η|]).

On I1Wn(x, η,Gη(τ)): let us take a path of integration as

z(σ) = σei arg (η) (σ ∈ [0, τ ]). (4.5)

Then we have η − Gη(τ) + z(σ) ∈ S(θ, κ0,+∞) − (l′ − ∑n
j=0 lj)e

iθ and z(σ) ∈
Gη−G

η(τ)+z(σ)
ρn+1 (⊂ Gη−G

η(τ)+z(σ)
ρn ). Hence,Wn(x, η−Gη(τ)+z(σ), z(σ)) is well-defined,

which implies the well-definedness of I1Wn(x, η,Gη(τ)).
On I2Wn(x, η,Gη(τ)) and I5Wn(x, η,Gη(τ)): let us take a path of integra-

tion as (4.5). Then we have η ∈ S(θ, κ0,+∞) − (l′ −∑n
j=0 lj)e

iθ and z(σ) ∈ Gηρn .
Hence, Wn(x, η, z(σ)) is well-defined. Therefore, it follows that I2Wn(x, η,Gη(τ))
and I5Wn(x, η,Gη(τ)) are well-defined.

On IiWn(x, η,Gη(τ)) (i = 3, 4, 6, 7): we only state paths of integration. By taking
paths of integration as

{
z(σ) = σei arg (η) (σ ∈ [0, τ ]),

s(λ) = λei arg (η) (λ ∈ [0, σ]),
(4.6)

we see all IiWn(x, η,Gη(τ)) (i = 3, 4, 6, 7) are well-defined.
Hence, Wn+1(x, η, t) is well-defined on

{
(x, η, t); |x| ≤ r0, η ∈ S(θ, κ0,+∞)−

(
l′ −∑n+1

j=0 lj

)
eiθ, t ∈ Gηρn+1

}
.
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Moreover, on

{(x, η, t); |x| ≤ r0, η ∈ S(θ, κ0,+∞)− (l′ −∑n+1
j=0 lj)e

iθ, t ∈ Gη}
we have the following representations:

I1Wn(x, η,Gη(R))

= − cos2 (A (x, (|η| −R)ei arg (η)))

×
R∫

0

B̂[β]η(− tan (A (x, (|η| −R)ei arg (η))),

E (x, (|η| −R)ei arg (η)) · (R−R1)ei arg (η))

×Wn(x, η,R,R1) · E (x, (|η| −R)ei arg (η)) · ei arg (η) dR1,

I2Wn(x, η,Gη(R))

=

R∫

0

cos2 (A (x, (|η| −R1)ei arg (η)))

× {1− tan (A (x, (|η| −R1)ei arg (η))) · E (x, (|η| −R1)ei arg (η)) ·R1e
i arg (η)}

× B̂[β]η(− tan (A (x, (|η| −R1)ei arg (η))), 0)

×Wn(x, η,R1, R1) · E (x, (|η| −R1)ei arg (η)) · ei arg (η) dR1,

I3Wn(x, η,Gη(R))

=

R∫

0

R1∫

0

cos2 (A (x, (|η| −R1)ei arg (η)))

× {1− tan (A (x, (|η| −R1)ei arg (η))) · E (x, (|η| −R1)ei arg (η)) ·R1e
i arg (η)}

× B̂[β]ηη(− tan (A (x, (|η| −R1)ei arg (η))),

E (x, (|η| −R1)ei arg (η)) · (R1 −R2)ei arg (η))

×Wn(x, η,R1, R2) · E (x, (|η| −R1)ei arg (η))
2 · {ei arg (η)}2 dR2 dR1,

I4Wn(x, η,Gη(R))

=

R∫

0

R1∫

0

∂

∂ζ

{
cos2 (A (x, ζ)) · B̂[β]η(− tan (A (x, ζ)),

E (x, (|η| −R1)ei arg (η)) · (R1 −R2)ei arg (η))
}∣∣∣
ζ=(|η|−R1)ei arg (η)

×Wn(x, η,R1, R2) · E (x, (|η| −R1)ei arg (η)) · {ei arg (η)}2 dR2 dR1,

I5Wn(x, η,Gη(R))

= −
R∫

0

R1e
i arg (η) · B̂[b]η(− tan (A (x, (|η| −R1)ei arg (η))), 0)

×Wn(x, η,R1, R1) · E (x, (|η| −R1)ei arg (η))
2 · ei arg (η) dR2 dR1,
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I6Wn(x, η,Gη(R))

= −
R∫

0

R1∫

0

R2e
i arg (η) · B̂[b]ηη(− tan (A (x, (|η| −R1)ei arg (η))),

E (x, (|η| −R1)ei arg (η)) · (R1 −R2)ei arg (η))

×Wn(x, η,R1, R2) · E (x, (|η| −R1)ei arg (η))
3 · {ei arg (η)}2 dR2 dR1,

I7Wn(x, η,Gη(R))

=

R∫

0

R1∫

0

B̂[b]η(− tan (A (x, (|η| −R1)ei arg (η))),

E (x, (|η| −R1)ei arg (η)) · (R1 −R2)ei arg (η))

×Wn(x, η,R1, R2) · E (x, (|η| −R1)ei arg (η))
2 · {ei arg (η)}2 dR1 dR1,

(4.7)

where

Wn(x, η, µ, ν) = Wn(x, (|η| − µ+ ν)ei arg (η), G(|η|−µ+ν)ei arg (η)

(ν)). (4.8)

Here we note the following fact: in general, let

Φ(x, y) =
∞∑

m=0

Φm(x)ym and B̂[Φ](x, η) =
∞∑

m=0

Φm(x)
ηm

m!
.

Then it follows from integration by parts that

η∫

0

B̂[Φ](x, Z · (η − t)) ·Ψ(x, t) dt

=

∞∑

m=0

Φm(x)Zm

m!

η∫

0

(η − t)m ·Ψ(x, t) dt

=

∞∑

m=0

Φm(x)Zm
η∫

0

η1∫

0

. . .

ηm∫

0

Ψ(x, ηm+1) dηm+1 . . . dη2 dη1. (4.9)

By applying (4.9) to (4.7), we obtain the following infinite-order integral representa-
tion:

Wn+1(x, η,Gη(R)) =

5∑

i=1

Ji(x, η,R), (4.10)
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where
J1(x, η,R) = I1Wn(x, η,Gη(R))

= −
∞∑

m=1

cos2 (A (x, (|η| −R)ei arg (η))) · βm(− tan (A (x, (|η| −R)ei arg (η))))

× E (x, (|η| −R)ei arg (η))
m

×
R∫

0

R1∫

0

. . .

Rm−1∫

0

Wn(x, η,R,Rm) dRm . . . dR2 dR1 · {ei arg (η)}m,

J2(x, η,R) = I2Wn(x, η,Gη(R)) + I3Wn(x, η,Gη(R))

=
∞∑

m=1

R∫

0

cos2 (A (x, (|η| −R1)ei arg (η)))

× {1− tan (A (x, (|η| −R1)ei arg (η))) · E (x, (|η| −R1)ei arg (η)) ·R1e
i arg (η)}

× βm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))
m

×
R1∫

0

. . .

Rm−1∫

0

Wn(x, η,R1, Rm) dRm . . . dR2 dR1 · {ei arg (η)}m

=

∞∑

m=1

R∫

0

cos2 (A (x, (|η| −R1)ei arg (η))) · βm(− tan (A (x, (|η| −R1)ei arg (η))))

× E (x, (|η| −R1)ei arg (η))
m

×
R∫

0

R1∫

0

. . .

Rm−1∫

0

Wn(x, η,R1, Rm) dRm . . . dR2 dR1 · {ei arg (η)}m

−
∞∑

m=1

R∫

0

cos2 (A (x, (|η| −R1)ei arg (η))) · tan (A (x, (|η| −R1)ei arg (η)))

× βm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))
m+1 ·R1

×
R1∫

0

. . .

Rm−1∫

0

Wn(x, η,R1, Rm) dRm . . . dR2 dR1 · {ei arg (η)}m+1

≡J2
′(x, η,R) + J2

′′(x, η,R),
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J3(x, η,R) = I4Wn(x, η,Gη(R))

= −
∞∑

m=1

R∫

0

∂

∂ζ

{
cos2 (A (x, ζ)) · βm(− tan (A (x, ζ)))

}∣∣∣∣∣
ζ=(|η|−R1)ei arg (η)

× E (x, (|η| −R1)ei arg (η))
m

×
R1∫

0

. . .

Rm∫

0

Wn(x, η,R1, Rm+1) dRm+1 . . . dR2 dR1 · {ei arg (η)}m+1
,

J4(x, η,R) = I5Wn(x, η,Gη(R)) + I6Wn(x, η,Gη(R))

= −
∞∑

m=1

R∫

0

bm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))
m+1

×
R1∫

0

. . .

Rm−1∫

0

Rm ·Wn(x, η,R1, Rm) dRm . . . dR2 dR1 · {ei arg (η)}m+1
,

J5(x, η,R) = I7Wn(x, η,Gη(R))

=

∞∑

m=1

R∫

0

bm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))
m+1

×
R1∫

0

. . .

Rm∫

0

Wn(x, η,R1, Rm+1) dRm+1 . . . dR2 dR1 · {ei arg (η)}m+1
.

Before estimating each Ji(x, η,R), let us note the following inequality. We omit the
proof.

Lemma 4.1. For δ > 0, it holds that

R∫

0

R1∫

0

. . .

Rm−1∫

0

eδRm dRm . . . dR2 dR1 ≤
1

δm
eδR (R ≥ 0). (4.11)

Now let us estimate each Ji(x, η,R).
On J1(x, η,R): it follows from the assumption of the induction that

|Wn(x, η,R,Rm)|
≤ C1e

δ1|η|e−δ1Reδ1RmM1
n

×
{

n∑

k=0

(
n

k

)
1

(p− 1)k
1

{1 + (|η| −R+Rm)−Rm}k(p−1)

}
Rm

n

n!

≤ C1e
δ1|η|e−δ1Reδ1RmM1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
R1

n

n!
.

(4.12)
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Hence, by the estimate
∣∣∣cos2 (A (x, (|η| −R)ei arg (η))) · βm(− tan (A (x, (|η| −R)ei arg (η))))

× E (x, (|η| −R)ei arg (η))
m
∣∣∣ ≤ C0M0

m (4.13)

which follows from (3.7), we have

|J1(x, η,R)| ≤ C1e
δ1|η|e−δ1RM1

nC0

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}

×
∞∑

m=1

M0
m

R∫

0

R1
n

n!

R1∫

0

. . .

Rm−1∫

0

eδ1Rm dRm . . . dR2 dR1.

Here let us adopt the estimate

R∫

0

R1
n

n!

R1∫

0

. . .

Rm−1∫

0

eδ1Rm dRm . . . dR2 dR1

≤
R∫

0

R1
n

n!

1

δ1
m−1 e

δ1R1 dR1 ≤
1

δ1
m−1 e

δ1R

R∫

0

R1
n

n!
dR1 =

1

δ1
m−1 e

δ1R
Rn+1

(n+ 1)!
.

Then we obtain
|J1(x, η,R)|

≤ C1e
δ1|η|M1

n

(
C0

∞∑

m=1

M0
m

δ1
m−1

){
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
Rn+1

(n+ 1)!
.

(4.14)

On J2
′(x, η,R): let us consider R1 instead of R in (4.12). Then we have

|Wn(x, η,R1, Rm)|

≤ C1e
δ1|η|e−δ1R1eδ1RmM1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R1)k(p−1)

}
R1

n

n!

≤ C1e
δ1|η|e−δ1R1eδ1RmM1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
R1

n

n!
.

(4.15)

Hence, by a similar estimate to (4.13) it holds that

|J2
′(x, η,R)| ≤ C1e

δ1|η|M1
nC0

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}

×
∞∑

m=1

M0
m

R∫

0

R1
n

n!
e−δ1R1

R1∫

0

. . .

Rm−1∫

0

eδ1Rm dRm . . . dR2 dR1.
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Therefore, by using the estimate

R∫

0

R1
n

n!
e−δ1R1

R1∫

0

. . .

Rm−1∫

0

eδ1Rm dRm . . . dR2 dR1

≤
R∫

0

R1
n

n!
e−δ1R1

1

δ1
m−1 e

δ1R1 dR1 =
1

δ1
m−1

R∫

0

R1
n

n!
dR1 =

1

δ1
m−1

Rn+1

(n+ 1)!
,

we see that J2
′(x, η,R) has the same estimate as (4.14) for J1(x, η,R).

On J3(x, η,R): it follows from the assumption of the induction that

|Wn(x, η,R1, Rm+1)|
≤ C1e

δ1|η|e−δ1R1eδ1Rm+1M1
n

×
{

n∑

k=0

(
n

k

)
1

(p− 1)k
1

{1 + (|η| −R1 +Rm+1)−Rm+1}k(p−1)

}
Rm+1

n

n!

≤ C1e
δ1|η|e−δ1R1eδ1Rm+1M1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
R1

n

n!
.

Hence, by the estimate
∣∣∣∣∣
∂

∂ζ

{
cos2 (A (x, ζ)) · βm(− tan (A (x, ζ)))

}∣∣∣
ζ=(|η|−R1)ei arg (η)

× E (x, (|η| −R1)ei arg (η))
m

∣∣∣∣∣ ≤ C0M0
m,

we obtain

|J3(x, η,R)| ≤ C1e
δ1|η|M1

nC0

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}

×
∞∑

m=1

M0
m

R∫

0

R1
n

n!
e−δ1R1

R1∫

0

. . .

Rm∫

0

eδ1Rm+1 dRm+1 . . . dR2 dR1.

Moreover, by using the estimate

R∫

0

R1
n

n!
e−δ1R1

R1∫

0

. . .

Rm∫

0

eδ1Rm+1 dRm+1 . . . dR2 dR1

≤ 1

δ1
m

Rn+1

(n+ 1)!
≤ 1

δ1
m−1

Rn+1

(n+ 1)!
,

we see that J3(x, η,R) has the same estimate as (4.14) for J1(x, η,R).
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On J5(x, η,R): by the estimate
∣∣∣bm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))

m+1
∣∣∣ ≤ C0M0

m,

similarly to the calculation for J3(x, η,R) we see that J5(x, η,R) has the same
estimate as (4.14) for J1(x, η,R).

Therefore, it holds that

|J1(x, η,R)|+ |J2
′(x, η,R)|+ |J3(x, η,R)|+ |J5(x, η,R)|

≤ C1e
δ1|η|M1

n

(
4C0

∞∑

m=1

M0
m

δ1
m−1

){
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
Rn+1

(n+ 1)!
.

(4.16)

On J2
′′(x, η,R): by adopting (4.15) let us estimate Wn(x, η,R1, Rm+1) as

|Wn(x, η,R1, Rm)|

≤ C1e
δ1|η|e−δ1R1eδ1RmM1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R1)k(p−1)

}
R1

n

n!

≤ C1e
δ1|η|e−δ1R1eδ1RmM1

n

{
n∑

k=0

(
n

k

)
1

(p− 1)k
1

(1 + |η| −R1)k(p−1)

}
Rn

n!
.

Then by the estimate
∣∣∣cos2 (A (x, (|η| −R1)ei arg (η))) · tan (A (x, (|η| −R1)ei arg (η)))

× βm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))
m+1 ·R1

∣∣∣

≤ C0M0
m

(1 + |η| −R1)p
R1 ≤

C0M0
m

(1 + |η| −R1)p
R

we have

|J2
′′(x, η,R)|

≤ C1e
δ1|η|M1

nC0

n∑

k=0

(
n

k

)
1

(p− 1)k

∞∑

m=1

M0
m

×
R∫

0

e−δ1R1

(1 + |η| −R1)(k+1)(p−1)+1

R1∫

0

. . .

Rm−1∫

0

eδ1Rm dRm . . . dR2 dR1
Rn+1

n!

≤ C1e
δ1|η|M1

n

(
C0

∞∑

m=1

M0
m

δ1
m−1

)

×
n∑

k=0

(
n

k

)
n+ 1

(p− 1)k

R∫

0

1

(1 + |η| −R1)(k+1)(p−1)+1
dR1

Rn+1

(n+ 1)!
.
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Furthermore, by noting

R∫

0

1

(1 + |η| −R1)(k+1)(p−1)+1
dR1 =

[
1

k + 1

1

p− 1

1

(1 + |η| −R1)(k+1)(p−1)

]R1=R

R1=0

≤ 1

k + 1

1

p− 1

1

(1 + |η| −R)(k+1)(p−1) ,

we obtain

|J2
′′(x, η,R)| ≤ C1e

δ1|η|M1
n

(
C0

∞∑

m=1

M0
m

δ1
m−1

)

×
{

n∑

k=0

(
n

k

)
n+ 1

k + 1

1

(p− 1)k+1

1

(1 + |η| −R)(k+1)(p−1)

}
Rn+1

(n+ 1)!

= C1e
δ1|η|M1

n

(
C0

∞∑

m=1

M0
m

δ1
m−1

)

×
{
n+1∑

k=1

(
n

k − 1

)
n+ 1

k

1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
Rn+1

(n+ 1)!
.

(4.17)

Similarly, it follows from the estimate

∣∣∣bm(− tan (A (x, (|η| −R1)ei arg (η)))) · E (x, (|η| −R1)ei arg (η))
m+1 ·Rm

∣∣∣

≤ C0M0
m

(1 + |η| −R1)p
R

that J4(x, η,R) has the same estimate as (4.17) for J2
′′(x, η,R). Therefore, it holds

that

|J2
′′(x, η,R)|+ |J4(x, η,R)|

≤ C1e
δ1|η|M1

n

(
2C0

∞∑

m=1

M0
m

δ1
m−1

)

×
{
n+1∑

k=1

(
n

k − 1

)
n+ 1

k

1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
Rn+1

(n+ 1)!
.

(4.18)
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Finally, let us combine (4.16) and (4.18). Then we obtain

|Wn+1(x, η,Gη(R))|

≤
5∑

i=1

|Ji(x, η,R)|

≤ C1e
δ1|η|M1

n

(
5C0

∞∑

m=1

M0
m

δ1
m−1

)

×
[

1 +
n∑

k=1

{(
n

k

)
+

(
n

k − 1

)
n+ 1

k

}
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

+
1

(p− 1)n+1

1

(1 + |η| −R)(n+1)(p−1)

]
Rn+1

(n+ 1)!
.

Moreover, by noting
(
n

k

)
+

(
n

k − 1

)
n+ 1

k
=

(
n

k

)
+

(
n+ 1

k

)
≤ 2

(
n+ 1

k

)
,

we have

|Wn+1(x, η,Gη(R))|

≤ C1e
δ1|η|M1

n+1

{
n+1∑

k=0

(
n+ 1

k

)
1

(p− 1)k
1

(1 + |η| −R)k(p−1)

}
Rn+1

(n+ 1)!
,

which implies the lemma for n+ 1. The proof has been completed.

APPENDIX

A. DERIVATION OF FORMULA (2.7)

In Subsection 2.2 we gave the formula of the solution V (x, η) of the initial value
problem (2.6) in the form of (2.7). Here we explain the derivation of it. Let (x, η) =
(X(µ, ν), Y (µ, ν)) be the characteristic curve of the operator L , that is, the solution
of the following initial value problem:





dx

dµ
= 1 + x2,

dη

dµ
= 1 + xη,

x(0) = ν, η(0) = 0.

(A.1)

Then, on this curve V (x, η) has the following form:

V (X(µ, ν), Y (µ, ν)) = l(ν) +

µ∫

0

k(X(τ, ν), Y (τ, ν)) dτ.
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Hence, if (x, η) 7→ (µ, ν) = (M(x, η), N(x, η)) is the inverse mapping of (µ, ν) 7→
(x, η) = (X(µ, ν), Y (µ, ν)) we have

V (x, η) = l(N(x, η)) +

M(x,η)∫

0

k(X(τ,N(x, η)), Y (τ,N(x, η))) dτ. (A.2)

By solving (A.1), it holds that

X(µ, ν) = tan (µ+ arctan ν),

Y (µ, ν) = tan (µ+ arctan ν)− ν · cos (arctan ν)

cos (µ+ arctan ν)
,

M(x, η) = arctanx+ A (x, η),

N(x, η) = − tan (A (x, η)).

Therefore, it follows from (A.2) that

V (x, η) = l(− tan (A (x, η)))

+

arctan x+A (x,η)∫

0

k(X(τ,− tan (A (x, η))), Y (τ,− tan (A (x, η)))) dτ.
(A.3)

Moreover, in (A.3) we practice an integration by substitution

τ(z) = A (x, η)−A (x, η − z), z : 0→ η.

Then we obtain (2.7).
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