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1. Introduction

Traffic road safety, as an element of a human–vehicle–road sys-
tem, has been the subject of scientific and research works for many 
years. There are many researchers and specialists in a wide range of 
fields or disciplines who are involved in the process of recognizing 
and understanding mechanisms related to a road crash. Many theories 
and models have been elaborated in order to evaluate the level of road 
traffic threats, as well as to identify circumstances, and cause and ef-
fect relationships of road accidents. The research area is extensive and 
covers: simulation and behavioural research (e.g. [8, 9]), elaboration 
of entropy models (e.g. [1, 12]), investigations of road polygons in-
cluding road surroundings, and traffic and weather conditions (speed 

in particular) (e.g. [3, 10]), as well as exploration and mining of real 
road accident data (e.g. [15, 19]). 

Statistical methods belong to the most important research tech-
niques utilised in analysing real data. There are two approaches in 
such an analysis. The first one is a frequentist (also known as clas-
sical) approach, in which a random event’s probability is assumed 
to be represented by the frequency of the event occurrence in a very 
large number of identical samples. The other one is a Bayesian (also 
known as non-classical) approach, according to which a prior (un-
conditional) probability of a random event is a measure of a rational 
belief that the event will occur. Then, the belief is modified using 
data from experiments or from observations of circumstances con-
nected with the event. Prior knowledge is transformed into posterior 
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In a Bayesian regression model, parameters are not constants, but random variables described by some posterior distributions. 
In order to define such a distribution, two pieces of information are combined: (1) a prior distribution that represents previous 
knowledge about a model parameter and (2) a likelihood function that updates prior knowledge. Both elements are analysed in 
terms of implementing the Bayesian approach in road safety analyses. A Bayesian multiple logistic regression model that classi-
fies road accident severity is  investigated. Three  groups of input variables have been considered in the model: accident location 
characteristics, at fault driver’s features and accident attributes. Since road accidents are scattered in space and time, two aspects 
of information source choices in the Bayesian modelling procedure are proposed and discussed: spatial and temporal ones. In both 
aspects, priors are based on selected data that generate background knowledge about model parameters – thus,  prior knowledge 
has an informative property. Bayesian likelihoods which modify  priors are data that deliver: (1) information specific to a road – in 
the spatial aspect or (2) the latest  information – in the temporal aspect. The research experiments were conducted to illustrate the 
approach and some conclusions have been drawn. 
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Parametry bayesowskiego modelu regresji nie są wartościami stałymi tylko zmiennymi losowymi opisanymi przez pewne rozkłady 
aposterioryczne. W celu zdefiniowania takiego rozkładu łączy się  dwa źródła informacji: (1) rozkład aprioryczny, który repre-
zentuje wcześniejszą wiedzę o parametrze modelu oraz (2) funkcję wiarygodności (wiarygodność bayesowską), która uaktualnia 
wiedzę a’priori. Oba te elementy są przedmiotem badań w kontekście wykorzystania podejścia bayesowskiego w analizach bez-
pieczeństwa ruchu drogowego. Badaniom podlega model wielokrotnej regresji logistycznej, który klasyfikuje status zdarzenia 
drogowego. W modelu uwzględniono trzy grupy zmiennych objaśniających: charakterystyki miejsca lokalizacji wypadku, cechy 
kierującego sprawcy oraz atrybuty wypadku. Ponieważ wypadki drogowe są rozproszone w czasie i przestrzeni, zaproponowano 
i poddano dyskusji dwa aspekty wyboru źródeł informacji w procedurze modelowania bayesowskiego: czasowy i przestrzenny. W 
obu podejściach rozkłady aprioryczne są definiowane na podstawie danych wybranych jako te, które generują uogólnioną wiedzę 
o parametrach modelu, tworząc tło podlegające modyfikacji – w ten sposób wiedza aprioryczna ma cechę informatywności. Wia-
rygodność bayesowska, modyfikująca rozkłady a’priori, jest definiowana za pomocą danych wprowadzających: (1) informację 
specyficzną dla wybranej drogi – w przypadku aspektu przestrzennego lub (2) informację najnowszą – w przypadku aspektu cza-
sowego. Zaproponowane podejście zilustrowano w eksperymentach badawczych i  przedstawiono wynikające z nich wnioski.

Słowa kluczowe: model regresji bayesowskiej, informatywne rozkłady aprioryczne parametrów modelu, wia-
rygodność bayesowska, klasyfikator statystyczny, status wypadku drogowego, cechy wypadku 
drogowego.
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knowledge, which is a resultant probability and a measure of a ra-
tional expectation of the event occurrence after getting information 
from the data. Bayesian thinking, supported by the development of 
numerical sampling techniques, has created modern statistics funda-
mentals, which enables formulating and solving problems not avail-
able in classical statistics. 

Bayesian regression modelling is a non-classical methodology 
which becomes widespread in road traffic safety analyses, mainly be-
cause it allows eliminating various weaknesses of classical models. 
Bayesian regression models are difficult from both conceptual and 
computational points of view. Nevertheless, they bring a new quality 
to the development of scientific research methods, and they enable 
a flexible, though non-standard, approach to modelling issues. The 
models are used in order to develop safety performance functions (e.g. 
[6, 7, 13, 16]), including a before-after analysis (e.g. [17]), and also to 
classify descriptive road accident features, such as driver’s behaviour, 
accident type, or accident severity (e.g. [2, 5, 16]). 

The non-classical method of statistical inference was used in the 
study in order to develop logistic regression models, in which road ac-
cident severity is a response variable and selected features describing 
accident circumstances are input variables. A certain methodology of 
defining two basic sources of information for the Bayesian model was 
elaborated. The research is directed towards establishing informative 
priors as a general background for the model, and then towards choos-
ing likelihood data in order to obtain posterior knowledge. Both ele-
ments would reflect various aspects of road safety research interests.

2. A Bayesian road accident severity classifier

The subject of the analysis is a statistical classifier – a logistic re-
gression model that classifies road accident severity AcSrv into one of 
two values (categories): LA – light accident (assumed to be a failure) 
and FSA – fatal or serious accident (assumed to be a success). Input 
variables represent the description of a road accident location, at-fault 
driver’s characteristics and accident features.

Logit is a link function in a logistic regression model. Conditional 
probability P(AcSrv = FSA | X1, …, Xk) that an accident which oc-
curred under circumstances described by a set of input variables val-
ues is fatal or serious constitutes the argument of the link function:
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The assumed model is relatively simple since the main purpose 
of the research is not to analyse the influence of the chosen features 
on the response variable, but to discuss the methodology that helps in 
developing a Bayesian regression model.

Contrary to the classical approach, it is assumed that Bayesian 
regression model parameters are not constants, but random variables. 
Therefore, each parameter is described by a certain posterior distribu-
tion that results from previous (prior) knowledge about the parameter 
and from the knowledge update using empirical data (Bayesian likeli-
hood data) [18]:
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The posterior distribution mean of the parameter βi accompanying 
the variable Xi is the measure used to assess the magnitude and the 
direction of the variable influence on the response.

According to Bayes’ rule, posterior distributions P(β | Y, X) con-
tain information from two sources: prior distributions P(β) and likeli-
hood functions L(Y, X | β). A variety of posterior distributions for a 
regression parameter βi is possible (Fig. 1), which is the consequence 
of the assumptions made about previous knowledge and likelihood 
data choices. Whenever one of the sources changes, the posterior 
changes as well.

Marcov Chains Monte Carlo (MCMC) sampling methodology 
[4, 18] is used in order to obtain posterior distributions P(β |Y, X). 
Each distribution is calculated  from the series of numbers meeting the 
Marcov chain criteria. The Mertopolis-Hastings algorithm belongs to 
the most popular generators of the series. The Gibbs sampler is also 
frequently used. The results of the MCMC method depend on: the 
number of iterations in the chain, the number of burn-in values and 
the thinning rate. Converging the Marcov chain to stationarity is a 
significant issue in the generation process. It gives rise to an output 
sample from the stationary posterior distribution. Diagnostic tests 
(e.g. Gelman-Rubic, Geweke, Heidelberger-Welch), as well as trace 
diagnostic and correlations plots are used in order to assess the Mar-
cov chain quality. 

3. Building a Bayesian road accident severity classifier

A Bayesian regression classifier (1) is created from a two-step 
Bayesian modelling procedure in which selected aspects of a road ac-
cident data investigation are adopted. The proposed approach and its 
results are strongly data-dependent: a several-year accident data reg-
istration period for a network of the same category roads in a given 
country region is needed (in particular roads supervised by a specific 
road administration unit). The data are selected in order to focus on 
either spatial or temporal aspect of the model estimation. The whole 
procedure extends and develops the concept presented in the investi-
gation by Yu and Abdel-Aty [20] on the selection of informative pri-
ors for Bayesian models of a safety performance function. 

The algorithm of building the Bayesian road accident severity 
classifier is presented hereafter.

Bayesian Modelling Step 1; defining the priors – the BM-S1 model

There are three general types of prior distributions used in Baye-
sian regression models: non-informative, semi-informative, and in-
formative. The first one is utilized in road traffic safety analyses more 
often than the others, although it is dominated by likelihood data in 
the final output, and mean values of Bayesian model parameters are 
very close to parameter estimators of a classical regression model. 
Better results can be obtained when, instead of diffuse non-informa-
tive prior distributions, well-defined informative prior ones are used, 
because they reflect knowledge on an investigated subject. In order to 
generate such distributions, suitable data processing is proposed. It is 

Fig. 1. A graphical interpretation of a Bayesian regression model pa-
rameter
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the first step of the above-mentioned procedure, thanks to which the 
Bayesian BM-S1 model is obtained.

There are the following sources of information for the BM-S1 
model: 

priors – non-informative, normal distributions with zero mean and a •	
very big standard deviation (1E+06),
Bayesian likelihood (likelihood function) – road accident data se-•	
lected according to the chosen aspect of the analysis: spatial or tem-
poral one.

The Bayesian likelihood for the BM-S1 model is defined in the fol-
lowing way:

for the spatial aspect: all accident data registered on the same cat-•	
egory roads in a given  country region for an assumed period of 
time,
for the temporal aspect: all historical accident data registered on the •	
same category roads in a given country region, excluding the data 
from the latest (most recent) registration period covering the  whole 
season cycle (a calendar year).

Means and standard deviations of posterior distributions obtained 
for the BM-S1 model become means and standard deviations of prior 
normal distributions for the parameters of the Bayesian regression 
model created in the second step.

Bayesian Modelling Step 2; defining the likelihood – the f inal BM-
S2 model

Since normal distributions derived in the first step are not diffuse, 
they generate informative prior knowledge constituting a basic back-
ground (a generalisation) for the final BM-S2 Bayesian model which 
follows the chosen aspect of the analysis. The likelihood data for the 
BM-S2 model define a training data set and they are treated as a factor 
emphasising and clarifying the research context: 

for the spatial aspect: accident data for a given road that are selected •	
from the whole data set modify priors related to the road, 
for the temporal aspect: the latest (most recent) accident data update •	
historical knowledge related to the whole area.

Fatal accident observations are extremely rare in road accident 
data, which usually results in a weak classification quality of the ac-
cident fatality. Therefore, in order to overcome such a negative phe-
nomenon and to strengthen the rare values influence on final model-
ling results, balancing [1, 14, 15] is applied to the likelihood data in 
the BM-S2 model forcing smaller differences in the proportions of 
the values of the response variable AcSrv. Firstly, the primary data 
set is split into three subsets according to the accident severity AcSrv: 
light, serious, and fatal. Then, all fatal accident observations are taken 
to create a 20% stratum in a new training data set. Next, serious and 
light accident observations are selected at random from the remain-
ing subsets in order to constitute, in the newly created data set, 30% 
and 50% strata respectively. Finally, the data modification is carried 
out so as to receive the binary-valued response variable AcSrv which 
defines a failure by the light accident severity category and a success 
by combining the serious and fatal accident severity categories. In 
such a balanced likelihood data set, the fatal accident observations 
grow considerably and, at the same time, the relatively rare success 
category does not exceed 50% of the data set size.

The research experiment has been carried out utilising the balanc-
ing scheme in each aspect of the data definition for the likelihood 
function in the BM-S2 model. 

4. Data description

The road accident data used in the study, acquired from the SEWiK 
police database system, were provided by the Police Headquarters of 
the	Świętokrzyskie	province,	Poland.	The	accidents	registered	during	

the time period from 2008 to 2014 on all of the nine national roads 
in the province are analysed in the study. The roads are supervised by 
a national road administration unit (a division of the General Direc-
torate for National Roads and Motorways) because they serve inter-
regional connections.

The observations which  meet the following criteria were selected 
for the research:

accidents were registered outside towns with civic rights on two-•	
lane single carriageways (national roads have the highest technical 
parameters among all the roads with such a profile),
only one adult driver caused the accident (in Poland, adult relates to •	
a person who is at least 18 years old),
only motor vehicles were involved in the accidents,•	
no pedestrians participated in the accidents.•	

Prior to the analysis, the data were cleaned and the records with 
outliers, missing or extremely rare values that couldn’t be aggregated 
(considering the physical meaning of the values) were removed. The 
resultant data set includes 1329 observations and it consists of the fol-
lowing variables chosen for the investigation:

the group of accident location characteristics (input variables):•	
ArTp ◦  – area type with the following values: Bt – built-up area 
(39.2%), NBt – non-built-up area (60.8%),
LgCnd  ◦  – road lighting conditions with the following values:  
NgDrk – night darkness, i.e. no lighting at night (16.6%), 
PrLg – poor lighting, e.g. dawn, dusk or artificial lighting 
(usually poor on non-urban roads) at night (14.7%), Dlg – 
daylight (68.6%),
RdSrf ◦    – roadway surface conditions with the following val-
ues: NDr – not dry, i.e. wet, snow-covered or ice-covered 
(38.5%), Dr – dry (61.5%), 

the group of at-fault driver’s features (input variables):•	
VhTp ◦  – vehicle type with the following values: HvVh – heavy 
vehicle (15.6%), Mtr – motorcycle, scooter, moped, i.e. sin-
gle-track motor vehicle (3.2%), Cr – car (81.3%), 
Gndr ◦  – at-fault driver’s gender with the following values: F 
– female (12,5%), M – male (87,5%),
AgGrp ◦  – at-fault driver’s age group with the following val-
ues: 02 – <18; 25) (25.1%), 03 – <25; 35) (27.5%), 04 – <35; 
50) (25.9%), 05 – <50; 65) (16.3%), 06 – at least 65 (5.1%),
Alh ◦  – at-fault driver under the influence of alcohol or other 
toxic substances with the following values: N – no (89.8%), 
Y – yes (10.2%),

the group of road accident attributes (input variables):•	
NrVhIn ◦  – number of vehicles involved with the following 
values: Sng – single vehicle accident (31.2%), Mlt – multiple 
vehicle accident (68.8%),
Bhv ◦  – at-fault driver’s behaviour with the following values: 
DrWrSdRd – driving wrong side of a roadway (5.2%), In-
SpPrCn – inappropriate  speed  for  prevailing traffic and 
weather conditions (44.2%), NGvWy – not giving right of way 
(10.3%), InTrUTr – incorrect turning or U-turning (4.1%), 
InPs – incorrect passing by (1.6%), InOvBp – incorrect over-
taking or bypassing (12.9%), PrPsCn – poor psychophysical 
condition (8.3%), FlCl – following too close (13.5%),

AcSvr•  – the response variable; accident severity defined by the status 
of a road crash according to the highest level of injuries experienced 
by a human casualty as follows [14, 15, 21]: LA – light accident 
(57%), SA – serious accident (29.4%), FA – fatal accident (13.5%).

5. Results

The Bayesian regression models were obtained from the 10000-el-
ement Marcov chains generated using the Metropolis algorithm for the 
following settings: the number of burn-out samples = 50000, the number 
of final chain iterations = 300000, the thinning indicator = 30. All the 
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Marcov chains reached the stationarity, which was verified by the auto-
correlation and trace plots, as well as by the Geweke and Heilderberger-
Welch tests. The resultant posterior distributions were unimodal. 

The research experiments were conducted using the SAS® soft-
ware: the in-built MCMC procedure and the author’s own SAS 4GL 
and SAS macro language computer programs.

The data were prepared taking into account:
for the spatial (S) aspect:•	

BM-S1(S):	all	the	national	roads	in	the	Świętokrzyskie	prov- ◦
ince, for the time period 2008-2014 (the data set length is 
equal to 1329 records),
BM-S2(S): the DK74 and DK7 roads for two independent  ◦
models, for the period 2008-2014 (after balancing, the data 
set length is equal to 220 and 196 for the DK74 and DK7 
roads respectively); the main difference between the roads 
is that the DK7 road, being the part of the European road 
network, additionally serves international traffic,

for the temporal (T) aspect:•	
BM-S1(T):	all	the	national	roads	in	the	Świętokrzyskie	prov- ◦
ince, for the time period 2008-2013 (the data set length is 
equal to 1221 records),

BM-S2(T):	all	the	national	roads	in	the	Świętokrzyskie	prov- ◦
ince, for the year 2014 (after balancing, the data set length is 
equal to 60 records).

The results of Bayesian modelling for the spatial aspect are pre-
sented in Table 1, and for the temporal aspect in Table 2. The BM-
S1models obtained in the first step are called prior models since they 
deliver informative prior knowledge for the second step. The BM-S2 
models obtained in the second step are called posterior models be-
cause they are the final classifiers of the whole modelling procedure. 
Both tables have a similar structure:

mean, and standard deviation values (•	 Mean (S.D.)) of parameter dis-
tributions for the prior models (BM-S1 – prior) and for the posterior 
models (BM-S2 – posterior),
reference of each posterior model to its corresponding prior model •	
by determining the index that, for any parameter, compares the pos-
terior distribution mean with its corresponding prior distribution 
mean. The index is calculated by the expression (meanposterior – 
meanprior)/|meanprior|. The index values are given in the Comparison 
columns for: DK74 vs. prior, DK7 vs. prior, and 2014 vs. prior,
comparison of two posterior models for the spatial aspect (for the •	
DK74 and DK7 roads) by showing the difference between the dis-

Table 1. Results of Bayesian accident severity classifiers for the spatial aspect

Model BM-S1(S) – prior BM-S2(S) – posterior for DK74 BM-S2(S) – posterior for DK7 Posteriors comparison

Specification Mean  (S.D.) Mean  (S.D.) Comparison: 
DK74 vs. prior Mean  (S.D.) Comparison: 

DK7 vs. prior DK74−DK7

Constant −1.396 (0.378) −1.224 (0.235) 12.3% −1.192 (0.249) 14.6% −0.032

The group of accident location characteristics

ArTp_Bt 0.311 (0.127) 0.381 (0.117) 22.5% 0.326 (0.119) 4.9% 0.055

LgCnd_NgDrk 0.341 (0.165) 0.434 (0.156) 27.1% 0.321 (0.153) −5.8% 0.112

LgCnd_PrLg −0.090 (0.174) −0.103 (0.159) 0.020 (0.166)

RdSrf_NDr 0.011 (0.126) −0.070 (0.116) 0.009 (0.118)

The group of at−fault driver’s features

VhTp_HvVh −0.082 (0.172) −0.039 (0.159) −0.062 (0.159)

VhTp_Mtr 1.217 (0.361) 1.101 (0.333) −9.5% 1.203 (0.333) −1.1% −0.102

Gndr_F −0.428 (0.191) −0.386 (0.172) 9.8% −0.422 (0.181) 1.5% 0.036

AgGrp_02 −0.043 (0.289) 0.202 (0.226) 0.023 (0.234)

AgGrp_03 −0.156 (0.288) 0.003 (0.215) −0.159 (0.229)

AgGrp_04 −0.112 (0.288) −0.026 (0.224) −0.142 (0.224)

AgGrp_05 −0.201 (0.300) −0.509 (0.245) 153.2% −0.078 (0.246) 0.432

Alh_N 0.008 (0.204) 0.062 (0.176) −0.099 (0.184)

The group of road accident attributes

AcTp_Sng −0.366 (0.158) −0.339 (0.143) 7.3% −0.440 (0.146) −20.2% 0.101

Bhv_DrWrSdRd 2.342 (0.343) 2.390 (0.308) 2.0% 2.340 (0.304) −0.1% 0.050

Bhv_InSpPrCn 1.175 (0.229) 1.161 (0.181) −1.1% 1.149 (0.187) −2.2% 0.013

Bhv_NGvWy 0.975 (0.263) 0.908 (0.225) −6.8% 1.089 (0.237) 11.7% −0.181

Bhv_InTrUTr 0.829 (0.345) 0.832 (0.307) 0.3% 0.753 (0.290) −9.1% 0.079

Bhv_InPs 2.439 (0.569) 2.410 (0.511) −1.2% 2.171 (0.500) −11.0% 0.238

Bhv_InOvBp 1.354 (0.250) 1.450 (0.226) 7.1% 1.435 (0.222) 6.0% 0.016

Bhv_PrPsCn 1.336 (0.295) 1.405 (0.258) 5.2% 1.233 (0.262) −7.7% 0.173

DIC 1168.6 249.5 231.5

Sensitivity 38.9% 59.3% 57.9%

Specificity 82.6% 67.8% 65.3%

HMSS 52.9% 63.3% 61.4%
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NGvWy (a drop in the mean value by 6.8% and a rise by 11.7% 
respectively), for incorrect turning or U-turning Bhv_InTrUTr 
(almost without a change and a drop by 9.1% respectively), 
and for poor psychophysical condition Bhv_PrPsCn (a rise by 
5.2% and a drop by 7.7% respectively).

Bayesian models for the temporal aspect

The sets of statistically significant input variables in the BM-S1(T) 1. 
and BM-S2(T) models differ in two variables: (1) night lighting 
condition LgCnd_NgDrk is insignificant in the BM-S1(T) model, 

tribution means of the corresponding model parameters calculated 
by the expression: (meanposterior(DK74) – meanposterior(DK7)). The dif-
ference values are given in the Posterior comparison column in Ta-
ble 1,
Deviance Information Criterion (•	 DIC) measure calculated from the 
training data sets: the unbalanced one for the BM-S1 model and the 
balanced one for the BM-S2 model,
classification quality assessment measures: sensitivity (the percent-•	
age of correctly classified FSA cases), specificity (the percentage of 
correctly classified LA cases), and the harmonic mean of sensitivity 
and specificity HMSS (which balances the two measures). All the 
indices were calculated from the primary likelihood data set for the 
BM-S1 model and from the primary (nor balanced) likelihood data 
set for the BM-S2 model.

For each parameter of a Bayesian model, the highest probability 
density HPD interval can be constructed unambiguously, provided 
that the parameter distribution is not uniform. To some extent, the 
HPD interval corresponds to a credible interval in classical statistics 
– if it contains zero, values of its parameter cannot be clearly inter-
preted. The uncertainty is also indicated when the absolute value of 
the parameter coefficient of variation exceeds 50%. Such statistically 
insignificant parameters are highlighted in red in Tables 1 and 2. The 
HPD intervals for the statistically significant parameters of the final 
models (the BM-S2 models obtained in the second step) are illustrated 
in Figures 2 and 3. 

In Tables 1 and 2, and in Figures 2 and 3, all the input variables are 
grouped according to their substantial meaning, i.e. accident location 
characteristics, at-fault driver’s features, and accident features.

Bayesian models for the spatial aspect

The sets of statistically significant input variables are roughly the 1. 
same in the BM-S1(S), as well as in both BM-S2(S) models. The 
driver’s age group proved significant in the BM-S2(S) model for 
the DK74 road only due to the significance of the coded variable 
AgGrp_05 (50-65 years old).
The directions of the influence of the individual statistically sig-2. 
nificant variables on the accident severity are the same in the BM-
S1(S) model and in both BM-S2(S) models.
The nature (magnitude and direction) of the change in the values 3. 
of the statistically significant posterior parameters (the BM-S2(S) 
models) in relation to the values of the corresponding prior param-
eters (the BM-S1(S) model) is road-dependent:

the positive influence of the accident location characteristics •	
on the accident severity is greater by more than 20% in the 
BM-S2(S) model for the DK74 road, whereas the change of 
the influence in the BM-S2(S) model for the DK7 road is dif-
ferent – there is a rise  by 5% in the parameter mean for built-
up area ArTp_Bt and a drop by 6% in the parameter mean for 
night darkness LgCnd_NgDrk,
the positive influence of single-track motor vehicle (motorcy-•	
cle, scooter, and moped) VhTp_Mtr and the negative influence 
of female driver’s gender Gndr_F on the accident severity 
identified in the prior parameter distributions become smaller 
by nearly 10% in the posterior distributions for the DK74 road, 
whereas they remain at almost the same level for the DK7 
road,
the modification of the parameter prior distribution for the sin-•	
gle vehicle accident variable NrVhIn_Sng by using the likeli-
hood data taken from different roads caused different results in 
the posterior distributions: the parameter mean value rose by 
7% for the DK74 road and dropped by 20% for the DK7 road,
the range of the change in the parameter posterior distributions •	
for driver’s behaviour is different for the DK74 and DK7 roads, 
which is particularly evident for not giving right of way Bhv_

Table 2. Results of Bayesian accident severity classifiers for the temporal 
aspect

Model BM-S1(T) – 
prior

BM-S2(T) – posterior for 
2014

Specification Mean  (S.D.) Mean  (S.D.) Comparison: 
2014 vs. prior

Constant −1.192 (0.393) −1.169 
(0.289) 1.9%

The group of accident location characteristics

ArTp_Bt 0.383 (0.133) 0.351 (0.127) −8.3%

LgCnd_NgDrk 0.319 (0.176) 0.353 (0.171) 10.6%

LgCnd_PrLg −0.048 (0.178) −0.040 
(0.176)

RdSrf_NDr −0.042 (0.131) 0.008 (0.128)

The group of at−fault driver’s features

VhTp_HvVh −0.053 (0.177) −0.077 
(0.171)

VhTp_Mtr 1.329 (0.387) 1.216 (0.362) −8.6%

Gndr_F −0.446 (0.202) −0.448 
(0.198) −0.4%

AgGrp_02 −0.222 (0.304) 0.099 (0.272)

AgGrp_03 −0.279 (0.300) −0.388 
(0.277)

AgGrp_04 −0.258 (0.303) −0.344 
(0.280)

AgGrp_05 −0.303 (0.314) −0.283 
(0.286)

Alh_N −0.051 (0.214) −0.046 
(0.198)

The group of road accident attributes

NrVhIn_Sng −0.356 (0.166) −0.377 
(0.160) −5.9%

Bhv_DrWrSdRd 2.423 (0.361) 2.389 (0.353) −1.4%

Bhv_InSpPrCn 1.103 (0.239) 1.246 (0.220) 12.9%

Bhv_NGvWy 1.061 (0.272) 0.912 (0.263) −14.0%

Bhv_InTrUTr 0.764 (0.357) 0.700 (0.352) −8.3%

Bhv_InPs 2.211 (0.594) 2.344 (0.568) 6.1%

Bhv_InOvBp 1.240 (0.262) 1.395 (0.243) 12.5%

Bhv_PrPsCn 1.350 (0.306) 1.239 (0.295) −8.2%

DIC 1092.4 74.8

Sensitivity 36.9% 61.9%

Specificity 82.8% 74.2%

HMSS 51.0% 67.5%
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but significant in the BM-S2(T) model, (2) incorrect turning or 
U-turning Bhv_InTrUTr is significant in the BM-S1(T) model, but 
insignificant in the BM-S2(T) model.
Similarly to the spatial models, the influence directions of the cor-2. 
responding statistically significant variables are the same in the 
BM-S1(T) model in the first modeling step and in the BM-S2(T) 
model in the second modeling step.
The latest information modified the up-till-now (prior) knowledge 3. 
about the importance of the individual input variables in the pos-
terior model, and in particular it caused strengthening the 
following:

the positive influence on the fatal or serious accident •	
status of the factors: night lighting condition LgCnd_
NgDrk (increase by 10.6%), inappropriate speed for the 
prevailing traffic and weather conditions Bhv_InSpPrCn 
(an increase by 12.9%), incorrect overtaking or bypass-
ing Bhv_InOvBp (an increase by 12.5%),
the negative influence on the fatal or serious accident •	
status of the single-vehicle accident variable NrVhIn_
Sng (a decrease by 5.9%).

Balancing the likelihood data in the second modelling step, 
both in spatial and temporal aspects, improves the classification 
quality of all the final Bayesian models. The values of the qual-
ity assessment measures are satisfactory:

sensitivity is  greater than 57%, •	
specificity is greater than 65%,•	
the HMSS coefficient is greater than 61%.•	

A general picture of the coefficients of variation for the sta-
tistically significant parameters of the models is presented in 

Fig. 4 in the form of a bubble plot, where the centres represent mean 
values and the radii are standard deviations of the coefficients. The 
standard deviation values are similar, irrespective of the step (prior or 
posterior models) and the aspect (spatial or temporal) of modelling. A 
slightly greater difference can be noticed for  the mean values – they 
are smaller for the parameters of the second step models, which indi-
cates the better estimation precision of the final posterior models.

Fig. 2. HPD intervals for statistically significant parameters of Bayesian models for the spatial aspect

Fig. 3. HPD intervals for statistically significant parameters of Bayesian models for the temporal aspect

Fig. 4. Bubble plots of mean and standard deviation values of the coefficient 
of variation for statistically significant parameters of Bayesian models
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6. Conclusions

Parameters are random variables in Bayesian regression models. 
Their so-called posterior distributions are obtained by combining sys-
tematic (prior) knowledge about the parameters with Bayesian like-
lihood – the knowledge derived from data. Some issues concerning 
the methodology of such models development for road traffic safety 
analyses is presented in the study. A logistic regression model that 
classifies road accident severity is analysed.

Road accident data are treated as a potential source of both infor-
mation types for the Bayesian model: prior knowledge and Bayesian 
likelihood. Some researchers apply such an approach in their road 
safety investigations. In the study, however, a specific interpretation 
of both sources has been proposed and consequently their special ap-
plication in the modelling process in which an additional task to ob-
tain the best possible final classifiers was considered as well.

Prior knowledge about regression parameters can be obtained 
from data the range of which depends on the subject of a research. 
If the investigation focuses on the spatial aspect, all accident data re-
corded on the same technical class roads  in a given country region 
are a possible source of informative priors, creating a reference back-
ground for being updated by Bayesian likelihood originating from ac-
cident data recorded on a chosen road. Thus, a model related to the 
road is obtained. If the investigation focuses on  the temporal aspect, 
historical road accident data create informative prior background, and 
new accident data from the latest registration period update the priors, 
providing a new general picture of the region road network safety.
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