

ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2017. Vol. 6. No. 2. 3–8

Use of a cloud storage for implementation informational processes
N. Boyko

Lviv Polytechnic National University, Lviv, Uktaine; e-mail: nataliya.i.boyko@lpnu.ua

Received February 15.2017: accepted June 2.2017

Abstract. In this paper, description of a concept of cloud

storage is offered. One of the most practical methods of storing
required information to cloud storage is also considered.
Method of creating screenshots is proposed. Theoretical research
is carried out and there are justified advantages and
disadvantages of different methods of storing information in
social networks. The best technique of creating screenshots has
been practically implemented. Problems that might come up
while working with approach given in this article and its
solutions are stipulated. There is analyzed a necessity of setting
a zoom parameter which is to transfer after transmitting size
value of the picture in social networks. In the article the
parameter that specifies the width of the final image and clearly
affects the quality of the image is also considered. There is
analyzed the effectiveness of creating an information system that
saves time for such information processes as tracking the photo
and its comments. In the paper the task of changing bets, which
are not immediately fixed in social networks is optimized. Also
there is implemented in practice a scalability problem of
information processes in social networks. In the article a
separation of the script is also put into practice. One part of
which directly performs the request of image and downloads it
to cloud storage. With help of another part the information
process is transmitted on the photo where the user identifies.

Key words: information process, script, information
system, cloud storage, screenshot, cloud service, application
programming interface, software.

INTRODUCTION

Cloud storage is a model of data storage where the
digital data is stored in logical pools, the physical storage
includes multiple servers (and often in different
locations), the physical environment is usually owned and
managed by a hosting company. These cloud storage
providers are responsible for keeping the data available
and accessible, and for physical environment working.
People buy storage capacity from the providers to store
data [1, 6–9].

Cloud storage services can be available through a co-
located cloud computer service, or a web service
application programming interface (API) or by
applications that uses the APІ [2, 19].

Cloud storage is based on highly virtualized
infrastructure, also it is like broader cloud computing in
the view of accessible interfaces, near-instant elasticity

and scalability, multi-tenancy, and metered resources
[4, 16].

Cloud storage typically refers to a hosted object
storage service, but the term has broadened to include
other types of data storage that are now available as a
service, like block storage.

Cloud storage is [6, 18]:
• made up of many distributed resources, but acts

as one, also known as federated or a cooperative storage
cloud architecture;

• high fault tolerant through redundancy and
distribution of data;

• high-strength through the creation of versioned
copies.

This article presents the method of taking screenshots
of a community in social network, called “Vkontakte”.
This process was useful in managing project, called “Date
auction” (the “Auction”). The purpose of creating this
project was the need to notice all the comments (bets) in
the community. Since, it is difficult to handle all the
comments manually this method of automation was
chosen [4, 7].

THE PRELIMINARY SEARCH, ANALYSIS
OF THE PROBLEM

Problem of the statement: to automate the process of
creating screenshots with bets.

According to the task, there are three key issues:
1. Find out whether the bet is placed.
2. Take a screenshot of the last bet (the word “last”

will later become the key to this paragraph).
3. Save the screenshot to cloud storage (where and

how).

THE FIRST PROBLEM: NOTIFICATION
OF PLACING THE BET

Whatever, is it a new post on the wall or question in
discussion or comment to the photo, social network
“Vkontakte” provides an open feedback for any event in
the community [14, 20]. All necessary documentation is
freely available, the link (https://vk.com/dev/

N. BOYKO 4

callback_api). After reviewing the documentation, the
next step is to get a community secret key, which is used
in queries. Having received the key, the script must be
configured, it will handle requests, which, in turn, will
come with all necessary information in JSON format.
Another advantage is the possibility of forming requests
for receiving additional data based on the obtained
information.

An example of this request:
{ "type": "photo_comment_new",
 "object": {
 "id": 4**2,
 "from_id": 15*****30,
 "date": 1478607535,
 "text": "Hello)",
 "photo_owner_id": -46****81,
 "photo_id": 43*****42 },
 "group_id": 46****81}

THE SECOND PROBLEM: CREATING
SCREENSHOTS

It is necessary to consider a few solutions:
1. Use your server.
2. Seek the assistance of third-party services.
Advantages and disadvantages are obvious: while

using your server, it is necessary to set up the software, in
case of using a third-party service, solution consists in
correct formation of the request. Since, the second option
is simpler to implement, it was selected, namely a “Site-
Shot” service. It is easy and convenient in usage, also all
necessary documentation is freely available [8, 17]. This
service consists of a free limited number of screenshots
(https://www.s-shot.ru/doc) and paid service (for each
picture https://www.s-shot.ru/doc_extended). Free version
is enough for efficient testing, however, it is worth to buy
paid version for usage in a consistent way. To take a
webpage screenshot it is enough to form an URL,
including all the required parameters.

For example, to take a screenshot of “Google” it is
enough to perform a GET request (parameter KEY
*********** is received from user office on the service
website):
http://api.s-
shot.ru/PNG/KEY************/?https://www.google.co
m.ua

Fig. 1. Images received in response to a request (PNG format)

Another feature is a necessity to set the zoom
parameter that is to transfer immediately after
transmitting the picture size. This parameter specifies the
width of the final image, and thus directly affects the
quality of the image [10, 19].

THE THIRD PROBLEM: PHOTO STORING

There are many solutions to this problem, there are
some approaches [11–13]:

1. To save screenshots to the server, where the main
script file is placed.

An important advantage of this option is no need to
create additional requests from third-party services. On
the other hand, the drawback consists in necessity to limit
and organize convenient access to a gallery, so that
requires significant effort and resources.

2. To use a “Dropbox” cloud service profile. This
method is instructive concerning an organization and
requiring no server resources with a script, although it
will later turn out to be that many steps are required to set
connection to the server. Furthermore, necessity of using
personal profile is not convenient.

3. To use “Google Drive” service. However, this
option is difficult to implement, it allows to take all the
files under control via requests.

 Despite all the difficulties, third way was chosen for
the work.

It is inappropriate way to consider such cloud
services as “Yandex Disk”, “Cloudinary”, because,
according to statistics, “Google” is the most popular and
the most commonly used server [16].

In the example given, OAuth2 standard is used and
on a recommendation for disk accession two JSON files
are used: the first includes information for application
authorization, the other consists of access tokens. The first
is generated by “Google” service; another is created and
used by the script that stores tokens directly. At this stage,
an unexpected problem has occurred: there is a lack of
connection and periodic repeated authorization
difficulties. Therefore, in the final version another way
was implemented, which uses the key service profile.

Fig. 2. A key service profile

Unlike the first version, for accession through the key

service it is enough to download the generated file with
information for connection and specify it in the code.

АРІ key
It is used for connecting and verification quotas. For
example, Google Translate API

Key Account Service
It is used by robot account for authorization between
servers. Works in Google Cloud API
Creating account data master
Several questions about the type of accounting data to be
used.

OAuth client ID
It allows to ask user`s permission for data access. For
example Google Calendar API

USE OF A CLOUD STORAGE FOR IMPLEMENTATION INFORMATIONAL PROCESSES 5

An example of a code that connects and downloads a
test file:
$credentialsFile = __DIR__ . '/service.json';
// Initialization of main class to work with Google API
$client = new Google_Client();

// Setting path of the file which contains authorization
data
$client->setAuthConfig($credentialsFile);
// Setting application name
$client->setApplicationName("Service Account
Example");

// Setting service that will be involved in interaction
$client->setScopes(Google_Service_Drive::DRIVE);

// Setting a user who will execute actions
$client->setSubject('s***.s***@gmail.com');

// Creating an exemplar of service for working with
Google Drive
$service = new Google_Service_Drive($client);

// Creating Google Drive file object
$file = new Google_Service_Drive_DriveFile();

// Creating file description
$file->setDescription('File description');

// Setting the file name under which the file will be saved
$file->setName("File Name.png");

// Setting a unique folder ID where the file is to be saved
$file->setParents([$folderId]);

// Uploading the file

$createdFile = $service->files->create($file, array(
 'data' => file_get_contents('test_image.png'),
 'mimeType' => 'image/png',
 'uploadType' => 'multipart'
));

Note that setScopes method takes service address,

which you want to access, as an argument, address can be
set manually or as a constant class variable. Another, no
less important method, called setSubject, where email
address is indicated as an argument. While testing it was
noticed that there is need to specify the file extension in
method setName. In case the file name is given without
extension, “Google” service downloads file under the
name “Untitled” [17]. Library, provided by service, also
has such method as setParents, which indicates the folder
where downloaded file is to be saved. In your cloud drive
an array of unique folder identifiers serves as function
arguments, therefore the file will be placed in each folder
specified in the array.

PRACTICAL SOLUTION

Consider the schematic plan of the work.
After getting the request from “Vkontakte” and

receiving information, the image URL is formed based on

photo_owner_id and photo_id. Later using a screenshot
URL the link for request is formed and received by a
standard function of PHP file_get_contesnts.

Fig. 3. The scheme receiving requests from applications
“Vkontakte”

As a result of these actions, the $screen variable

contains finished screenshot, which will later be
downloaded to “Google Drive” as a simple code.

// Getting the data that has been received by request

$data =
json_decode(file_get_contents('php://input'));

// Receiving main information
$comment_id = $data->object->id;
$photo_owner_id = $data->object-
>photo_owner_id; // ID of the owner of the photo
$photo_id = $data->object->photo_id; // Photo ID
(bet)
$from_id = $data->object->from_id; // ID of the
user that has placed the bet

// Formation of the image URL
$photoUrl = 'https://vk.com/photo' .
$photo_owner_id . '_' . $photo_id;

// Forming an URL to send a request to a picture
service
$screenBaseUrl = "http://api.s-
shot.ru/KEY********/1300x1000/1500/D1/JS0/png/
?";
$screenUrl = $screenBaseUrl.$photoUrl;

// Receiving file content (screenshot) via formed
URL
$screen = file_get_contents($screenBaseUrl);

// Uploading file to cloud storage
$file = new Google_Service_Drive_DriveFile();
$file->setDescription('Нова ставка ' . date("d F Y
H:i:s") . ' from user id' . $from);
$file->setMimeType('image/jpeg');
$file->setName($name . "_" . time() . ".png");
$file->setParents([$folderId]);
$createdFile = $service->files->create($file, array(
 'data' => file_get_contents($screenUrl),
 'mimeType' => 'image/png',
 'uploadType' => 'multipart'

));

N. BOYKO 6

When saving (or rather from creating to saving)
picture in the “Google Drive” folder, another inaccuracy
was found. Time to create the picture was quite large, so
“VKontakte” has taken it for a bad request and has
duplicate it, because of the every such request has created
a picture, it gave an extra load on the server, which was
not actually vindicated [16].

To resolve this micro problem, it was used two
regular PHP functions popen () and pclose (), as a
parameter the first function gets the line that is to be
executed in the console and as a result creates a stream
object, the second closes the stream object created by the
first function, thus overrides expectations of completion
of the running script:

$fp = popen('nohup php -f sub_script.php &', 'r');
pclose($fp);

As a result, one script, which performed receiving
request and processing pictures, have turned into two. The
first one have worked out feedback of “Vkontakte”, the
other have performed creating and uploading pictures on
“Google Drive”. After that the working system has been
running even better: “VKontakte” gets response about
successful processing of the request in time, also the
script handles the picture without holding up sending
responses to “Vkontakte”.

ANOTHER PROBLEM AND ITS SOLUTION

Created utility will be useful only if the comments
placed under the photo are visible without scrolling. In
case comments (bets) were many more – only first bets
will be visible under the photo, what makes the picture
completely useless.

Fig. 4. Useless of the tool in case of a large number of comments

Found on the net it has become a key way in solving

the problem, however it was added one more service to
the system – URL shortening service. It represents the
following: in previous HTML versions (a hypertext
markup language) supported such notion as an anchor, it

was kind of “#target” link and text of this link points to a
unique identifier of the web page element to which you
want to scroll. Having analyzed the page with a picture, it
was noticed that every comment includes several blocks
with identifiers which were generated in a certain way.

Fig. 5. Blocks with identifiers for each comment

Fig. 6. Query results

Using this identifier in an address line of browser

allows to scroll the whole content to the needed comment
(bet). However, while generating the link that the
screenshot is received by, the anchor sign ("#") is
transmitted in the same address line:

http://api.s-
shot.ru/PNG/KEY************/?https://vk.com/photo-
46****81_43***** 52 # wpe_bottom-46 ***
781photo_4033

Accordingly. the script is not taken into account by
the service, which takes pictures, but by the service,
which directly works with it, that is script or browser.
Leaving other options aside, as URL shortening server
was chosen “Bitly.com”, it has quite loyal limits of the

USE OF A CLOUD STORAGE FOR IMPLEMENTATION INFORMATIONAL PROCESSES 7

number of short links. URL was shortened to the
following: http://bit.ly/29***Tp

Result:
http://api.s-
shot.ru/PNG/KEY************/?http://bit.ly/29***Tp

With the addition of URL shortening service, the
general scheme has evolved:

Fig. 7. The general scheme of the system after adding a link
shortening service

It is very easy to work with “Bitly”: there are four

libraries available, both for developers and service. As the
library to work with URL shortening service was chosen
one of the simplest:
(https://github.com/Falicon/BitlyPHP). Using this library
comes down to two formal actions – “connect and use”:

include_once('bitly.php');
$params = array();
$params['access_token'] =

'083a815*******7bf84bf';
$params['longUrl'] = 'http://google.com';
$results = bitly_get('shorten', $params);
echo json_encode($results);

If successful, the $ result array contains everything

you need to use:

{
 "status_code": 200,
 "status_txt": "OK",
 "data": {
 "long_url": "http:\/\/google.com\/",
 "url": "http:\/\/bit.ly\/2eBHPvW",
 "hash": "2eBHPvW",
 "global_hash": "900913",
 "new_hash": 0
 }
}

We are interested only in shortened URL, that is the

information in the $result ['data'] ['url']. It will be
substituted as the link of picture is to be set.

CONCLUSION

As a result, there is a system that saves time, because
there is no need to monitor each photo and its comment
(bet). All this is done automatically and without your

participation. In the process of this system, there is
another problem, “VKontakte” sends notifications only
when a new comment has appeared, but also it allows
authors to edit their comments, because it is sometimes
the case that the bet was changed, but the modification
was not immediately fixed.

Changing comments may be recorded only in two
time points: while creating a comment or adding the next
new, since, the changed one gets into the image zone
anyway. Given the magnitude of the social network, the
option of the extension, while changing comments, will
be available later, so that will fix not only the bet
occurrence but also any action on it.

It is necessary to mention about the separation of the
script into two parts while calling the script, which
directly performs the picture request and uploads it to the
cloud drive, a URL on photos and user ID (for easy search
of user who has placed the bet) is passed as cli argument.
This information is stored in the field of file description to
“Google Drive”.

REFERENCES

1. Boyko N. 2016 Basic concepts of dynamic recurrent
neural networks development / N. Boyko, P. Po-
bereyko // ECONTECHMOD : an international
quarterly journal on economics of technology and
modelling processes, Lublin: Polish Academy of
Sciences, Vol. 5, No. 2, pp. 63–68.

2. Leskovec J. 2014 Mining of massive datasets /
J. Leskovec, A. Rajaraman, J.D. Ullman, Massa-
chusetts: Cambridge University Press, 470 р.

3. Mayer-Schoenberger V. 2013 A revolution that will
transform how we live, work, and think / V. Mayer-
Schoenberger, K. Cukier, Boston New York,
230 р.

4. Boyko N. 2016 A look trough methods of
intellectual data analysis and their applying in
informational systems / N. Boyko // Computer
sciences and information technologies CSIT 2016 :
Proc of XI International scientific practical conference
CSIT 2016 : proceedings, Lviv: Lviv Polytechnic
Publishing House, pp. 183–185 (іn Ukrainian)

5. Maass W. 2002 Real-time computing without stable
states: a new framework for neural computations
based on perturbations / W. Maass, T. Natschger,
H. Markram / Neural Computation : proceedings,
Switzerland: Institute for Theoretical Computer
Science, Vol. 11, pp. 2531–2560.

6. Schrauwen B., Verstraeten D., Campenhout J. V.
2007 An overview of reservoir computing theory,
applications and implementations / B. Schrauwen,
D. Verstraeten, J. V. Campenhout // Proc. of the 15th
European Symp. on Artificial Neural Networks:
proceedings, Belgium: Bruges, pp. 471–482.

7. Coombes S. 2005 Waves, bumps, and patterns in
neural field theories / S. Coombes // Biological
Cybernetics : proceedings, Nottingham: University of
Nottingham, Vol. 93, No. 2, pp. 91–108.

8. Antonopoulos N. 2010 Cloud Computing:
Principles, Systems and Applications / Nick
Antonopoulos, Lee Gillam, L.: Springer, 379 p.

N. BOYKO 8

9. Shyshkin V. M. 2011 Safety of cloud computing –
problems of risk analysis / V. M. Shyshkin//
International scientific practical conference
“Automated systems of management and modern
information technologiesi”, Tbilisi: Publication
House “Technical University”, рр. 142
(in Ukrainian)

10. Nandkishor G. 2012 Use of cloud computing in
library and information science field / Nandkishor
Gosavi, Seetal S. Shinde, Bhagyashree Dhakulkar //
International Journal of Digital Library Services,Vol.
2, Iss. 3, рр. 51–60, Mode of access:
http://www.ijodls.in/uploads/3/6/0/3/3603729/vol._2_
july_-_sept._2012_part-2.pdf.

11. Sangeeta N. 2013 Dhamdhere. Cloud Computing and
Virtualization / Sangeeta N. Dhamdhere, 385 p.

12. Monirul Islam M. 2013 Necessity of cloud
computing for digital libraries: Bangladesh
perspective / M. Monirul Islam // International
Conference on Digital Libraries (ICDL): Vision
2020: Looking Back 10 Years and Forging New
Frontiers, рр. 513–524.

13. Avetysov M. A. Oblachnыe vыchyslenyya dlya
byblyotek / M. A. Avetysov, Mode of access:
http://www.aselibrary. ru/blogs/archives/997/.

14. Mell P. 2011 The NIST Definition of Cloud
Computing : Recommendations of the National

Institute of Standards and Technology / Peter Mell,
Timothy Grance, Mode of access:
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspeci
alpublication800-145.pdf.

15. Microsoft support cloud computing, Mode of access:
http://www.dw.com/uk/microsoft-531253.

16. Hewitt C. 2008 ORGs for Scalable, Robust,
Privacy-Friendly Client Cloud Computing / Carl
Hewitt // IEEE Internet Computing, Vol. 12, Nо. 5,
рр. 96–99.

17. Foster I. 2001 The Anatomy of the Grid: Enabling
Scalable Virtual Organizations / I. Foster //
International Journal of High Performance
Computing Applications, Vol. 15, Nо. 3,
рр. 200–222.

18. Matov O. Ia. 2004 Information technology and the
development of GRID systems in high-performance,
globally-distributed computing infrastructures
corporate cooperation / O. Ia. Matov // Registration,
storage and processing of data, V. 6, Nо. 1, P. 85–98.

19. Graham S. 2005 Building Web Services with Java:
Making Sense of XML, SOAP, WSDL, and UDDI,
SAMS / S. Graham, 816 p.

20. Foster I. 2008 Cloud computing and grid computing
360-degree compared / I. Foster, Y. Zhao, I. Raicu,
S. Lu // Grid Computing Environments Workshop,
GCE'08, рр. 1–10.

