PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of hydraulic response of smooth submerged breakwaters to irregular waves

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a laboratory experiment on transmission, reflection, and dissipation of irregular waves over smooth impermeable submerged breakwaters. Experiments included 75 JONSWAP-based irregular waves with five different wave characteristics generated at three water depths in a 2D wave flume. The investigated breakwater sections were three rectangular breakwaters with different widths, a toothed rectangular breakwater, and a trapezoidal breakwater with a slope of 1:2. A new comprehensive dimensionless parameter (β) was proposed representing both wave hydrodynamic and breakwater geometry characteristics. This parameter could be employed as a suitable descriptive option to make an accurate estimate of the hydraulic performances of submerged breakwaters. The β parameter is composed of four conventional simple dimensionless variables. However, the results revealed that the relative submergence depth significantly affects the hydraulic responses of submerged breakwaters. The transmission, reflection and dissipation of waves show a logarithmic growth, a logarithmic reduction, and a quadratic decreasing trend against the increasing of β parameter, respectively. The verifications of results revealed the high efficiency of β parameter for data reported by Carevic et al. (2013) with R2 = 0.88 and high agreement with predictions made by Van der Meer et al. (2005) formulation with R2 = 0.93.
Czasopismo
Rocznik
Strony
448--462
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr.
Twórcy
  • Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
  • Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
  • Ghent University, Department of Civil Engineering, Technologiepark 60, 9052, Ghent, Belgium
Bibliografia
  • [1] Bao, T. Q., 2011. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 53 (3), 807-818. https://doi.org/10.5697/oc.53-3.807.
  • [2] Bleck, M., Oumeraci, H., 2002. Wave damping and spectral evolution at artificial reefs. In: Fourth International Symposium on Ocean Wave Measurement and Analysis, 1062-1072. https://doi.org/10.1061/40604(273)108.
  • [3] Carevic, D., Loncar, G., Prsic, M., 2012. Transformation of statistical and spectral wave periods crossing a smooth low-crested structure. Oceanologia 54 (1), 39-58. https://doi.org/10.5697/oc.54-1.039.
  • [4] Carevic, D., Loncar, G., Prsic, M., 2013. Wave parameters after smooth submerged breakwater. Coastal Eng 79, 32-41. https://doi.org/10.1016/j.coastaleng.2013.04.004.
  • [5] Dattatri, J., Raman, H., Shankar, N. J., 1978. Performance characteristics of submerged breakwaters. In: Proc. 16th Int. Conf. On Coastal Eng, 1978, 2153-2171. https://doi.org/10.9753/icce.v16.130.
  • [6] d’Angremond, K., Van der Meer, J. W., de Jong, R. J., 1996. Wave transmission at low crested structures. In: Proc. 25th Int. Conf. on Coastal Eng. ASCE, 3305-3318. https://doi.org/10.1061/9780784402429.187.
  • [7] Davidson, M., Bird, P., Bullock, G., Huntley, D., 1996. A new nondimensional number for the analysis of wave reflection from rubble mound breakwaters. Coastal Eng 28, 93-120. https://doi.org/10.1016/0378-3839(96)00012-9.
  • [8] Dean, R. G., Chen, R., Browder, A. E., 1997. In: Full scale monitoring study of a submerged breakwater. Palm Beach, Florida, USA. Coastal Eng. 29, 291-315. https://doi.org/10.1016/S0378-3839(96)00028-2.
  • [9] Fang, Z., Xiao, L., Kou, Y., Li, J., 2018. Experimental study of the wave-dissipating performance of a four-layer horizontal porous-plate breakwater. Ocean Eng. 151, 222-233. https://doi.org/10.1016/j.oceaneng.2018.01.041.
  • [10] Filianoti, P., Piscopo, R., 2015. Sea wave energy transmission behind submerged absorber caissons. Ocean Eng. 93, 107-117. https://doi.org/10.1016/j.oceaneng.2014.09.031.
  • [11] Gao, J., Ma, X., Zang, J., Dong, G., Ma, X., Zhu, Y., Zhou, L., 2020. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coastal Eng 158, 103670. https://doi.org/10.1016/j.coastaleng.2020.103670.
  • [12] Gao, J., Zhou, X., Zhou, L., Zang, J., Chen, H., 2019. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor. Ocean Eng 172, 86-95. https://doi.org/10.1016/j.oceaneng.2018.11.048.
  • [13] Goda, Y., Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments. Coastal Eng 1976, 828-845. https://doi.org/10.9753/icce.v15.47.
  • [14] Goda, Y., Takeda, H., Moriya, Y., 1967. Laboratory investigation on wave transmission over breakwaters. Port Harbour Tech. Res. Inst.
  • [15] Hajivalie, F., Mahmoudof, S. M., 2018. Experimental Study of Energy Dissipation at Rectangular Submerged Breakwater. In: Proc. of ICFM8. Sendai, Japan.
  • [16] Hajivalie, F., Yeganeh-Bakhtiary, A., Bricker, J. D., 2015. Numerical study of the effect of submerged vertical breakwater dimension on wave hydrodynamics and vortex generation. Coastal Eng. J. 57 (03), 1550009. https://doi.org/10.1142/S0578563415500096.
  • [17] Kubowicz-Grajewska, A., 2015. Morpholithodynamical changes of the beach and the nearshore zone under the impact of submerged breakwaters — a case study (Orłowo Cliff, the Southern Baltic). Oceanologia 57 (2), 144-158. https://doi.org/10.1016/j.oceano.2015.01.002.
  • [18] Liang, B., Wu, G., Liu, F., Fan, H., Li, H., 2015. Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model. Oceanologia 57 (4), 308-317. https://doi.org/10.1016/j.oceano.2015.07.002.
  • [19] Liao, Y.-C., Jiang, J.-H., Wu, Y.-P., Lee, C.-P., 2013. Experimental study of wave breaking criteria and energy loss caused by a submerged porous breakwater on horizontal bottom. J. Mar. Sci. Technol. 21 (1), 35-41. https://doi.org/10.6119/JMST-011-0729-1.
  • [20] Liu, Y., Li, H.-J., 2012. Analysis of wave interaction with submerged perforated semi-circular breakwaters through multipole method. Appl. Ocean Res. 34, 164-172. https://doi.org/10.1016/j.apor.2011.08.003.
  • [21] Lokesh, K. N. B., Sannasiraj, S., Sundar, V., Schlurmann, T., 2015. Experimental investigations on wave transmission at submerged breakwater with smooth and stepped slopes. Procedia Eng. 116 (1), 713-719. https://doi.org/10.1016/j.proeng.2015.08.356.
  • [22] Lorenzoni, C., Piattella, A., Soldini, L., Mancinelli, A., Brocchini, M., 2015. An experimental investigation of the hydrodynamic circulation in the presence of submerged breakwaters, Proc. 5th International Symposium on Ocean Measurements and Analysis, Paper no. 125.
  • [23] Lorenzoni, C., Postacchini, M., Brocchini, M., Mancinelli, A., 2016. Experimental study of the short-term efficiency of different breakwater configurations on beach protection. J. Ocean Eng. Mar. Energy 2 (2), 195-210. https://doi.org/10.1007/s40722-016-0051-9.
  • [24] Mahmoudof, S. M., Azizpour, J., 2020. Field observation of wave reflection from plunging cliff coasts of Chabahar. Appl. Ocean Res. 95, 102029. https://doi.org/10.1016/j.apor.2019.102029.
  • [25] Mansard, E. P., Funke, E., 1980. The measurement of incident and reflected spectra using a least squares method. In: Proc. 17th Int. Conf. on Coastal Eng, 1980, 154-172. https://doi.org/10.9753/icce.v17.8.
  • [26] Rageh, O., Koraim, A., 2010. Hydraulic performance of vertical walls with horizontal slots used as breakwater. Coastal Eng 57 (8), 745-756. https://doi.org/10.1016/j.coastaleng.2010.03.005.
  • [27] Rao, S., Shirlal, K. G., Varghese, R. V., Govindaraja, K., 2009. Physical model studies on wave transmission of a submerged inclined plate breakwater. Ocean Eng 36 (15-16), 1199-1207. https://doi.org/10.1016/j.oceaneng.2009.08.001.
  • [28] Sindhu, S., Shirlal, K. G., 2015. Prediction of wave transmission characteristics at submerged reef breakwater. Procedia Eng. 116, 262-268. https://doi.org/10.1016/j.proeng.2015.08.289.
  • [29] Suh, K. D., Choi, J. C., Kim, B. H., Park, W. S., Lee, K. S., 2001. Reflection of irregular waves from perforated-wall caisson breakwaters. Coastal Eng 44 (2), 141-151. https://doi.org/10.1016/S0378-3839(01)00028-X.
  • [30] Sumer, B. M., Fredsøe, J., Lamberti, A., Zanuttigh, B., Dixen, M., Gislason, K., Di Penta, A. F., 2005. Local scour at roundhead and along the trunk of low crested structures. Coastal Eng 52 (10-11), 995-1025. https://doi.org/10.1016/j.coastaleng.2005.09.012.
  • [31] Van der Meer, J. W., 1991. Stability and transmission at low-crested structures. Delft Hydraulics Publ.
  • [32] Van der Meer, J. W., Briganti, R., Zanuttigh, B., Wang, B., 2005. Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coastal Eng 52 (10-11), 915-929. https://doi.org/10.1016/j.coastaleng.2005.09.005.
  • [33] Young, D. M., Testik, F. Y., 2011. Wave reflection by submerged vertical and semicircular breakwaters. Ocean Eng 38 (10), 1269-1276. https://doi.org/10.1016/j.oceaneng.2011.05.003.
  • [34] Zhang, N., Zhang, Q., Zou, G., Jiang, X., 2016. Estimation of the transmission coefficients of wave height and period after smooth submerged breakwater using a non-hydrostatic wave model. Ocean Eng 122, 202-214. https://doi.org/10.1016/j.oceaneng.2016.06.037.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a022aa1-b5fb-4f73-9e66-59a92e437afe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.