Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The changes in the on-axis polarization state of random electromagnetic Gaussian Schell-model vortex beams propagating in biological tissues have been studied. In different media propagation, the bigger Cn2 is, the earlier the appearance of the inflexion points in the on-axis degree of the polarization P(0, 0, z) is. As the propagation distance increases, the values of the on-axis orientation angle θ(0, 0, z) undergo several processes: at the beginning they are positive, then gradually increase to the maximum, jump to a negative value, finally tend to a fixed value. The bigger Cn2 corresponds to previous jumping position. In the entire propagation, the values of the on-axis ellipticity ε(0, 0, z) are larger than the initial one. There exists a phenomenon that the values of P(0, 0, z), θ(0, 0, z) and ε(0, 0, z) keep their extremes in a length of propagation distances for the far infrared beams. The maximum of P(0, 0, z) is the smallest and the jumping range of θ(0, 0, z) is the largest for the ultraviolet beams. Compared with σyy > σxx, the changes in magnitudes in P(0, 0, z) are more obvious when σyy < σxx, the changes in θ(0, 0, z) are just the reverse for σyy < σxx.
Czasopismo
Rocznik
Tom
Strony
297--309
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Department of Physics, North University of China, Taiyuan 030051, China
autor
- Department of Physics, North University of China, Taiyuan 030051, China
autor
- Department of Physics, North University of China, Taiyuan 030051, China
Bibliografia
- [1] XIE S., LI H., LU Z., Overview of tissue optics, Physics 27(10), 1998, pp. 599–604.
- [2] WANRONG GAO, Determination of spatial correlation functions of refractive index of living tissue, Journal of Microscopy 245(1), 2012, pp. 43–48.
- [3] WANRONG GAO, Effect of tissue structure on resolution of imaging systems, Journal of Modern Optics 60(15), 2013, pp. 1290–1296.
- [4] WOLF E., Introduction to the Theory of Coherence and Polarization of Light, Cambridge University Press, Cambridge, 2007.
- [5] WESTPHAL V., HELL S.W., Nanoscale resolution in the focal plane of an optical microscope, Physical Review Letters 94(14), 2005, article ID 143903.
- [6] SCHMITT J.M., KUMAR G., Turbulent nature of refractive-index variations in biological tissue, Optics Letters 21(16), 1996, pp. 1310–1312.
- [7] WANRONG GAO, KOROTKOVA O., Changes in the state of polarization of a random electromagnetic beam propagating through tissue, Optics Communications 270(2), 2007, pp. 474–478.
- [8] WANRONG GAO, Changes of polarization of light beams on propagation through tissue, Optics Communications 260(2), 2006, pp. 749–754.
- [9] XIAOYING LIU, DAOMU ZHAO, The statistical properties of anisotropic electromagnetic beams passing through the biological tissues, Optics Communications 285(21–22), 2012, pp. 4152–4156.
- [10] JIAN WANG, Advances in communications using optical vortices, Photonics Research 4(5), 2016, pp. B14–B28.
- [11] LEONHARD N.D., SHATOKHIN V.N., BUCHLEITNER A., Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence, Physical Review A 91(1), 2015, article ID 012345.
- [12] ZHIGANG ZHANG, FENGLIANG DONG, KEMAO QIAN, QINGCHUAN ZHANG, WEIGUO CHU, YUNTIAN ZHANG, XUAN MA, XIAOPING WU, Real-time phase measurement of optical vortices based on pixelated micropolarizer array, Optics Express 23(16), 2015, pp. 20521–20528.
- [13] JINHONG LI, PENGHUI GAO, KE CHENG, MEILING DUAN, Dynamic evolution of circular edge dislocations in free space and atmospheric turbulence, Optics Express 25(3), 2017, pp. 2895–2908.
- [14] JINHONG LI, JUN ZENG, Dynamic evolution of coherent vortex dipole in atmospheric turbulence, Optics Communications 383, 2017, pp. 341–348.
- [15] JUN ZENG, JINHONG LI, Dynamic evolution and classification of coherent vortices in atmospheric turbulence, Optica Applicata 45(3), 2015, pp. 299–308.
- [16] JINHONG LI, JUN ZENG, MEILING DUAN, Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence, Optics Express 23(9), 2015, pp. 11556–11565.
- [17] MEILAN LUO, QI CHEN, LIMIN HUA, DAOMU ZHAO, Propagation of stochastic electromagnetic vortex beams through the turbulent biological tissues, Physics Letters A 378(3), 2014, pp. 308–314.
- [18] KOROTKOVA O., SALEM M., DOGARIU A., WOLF E., Changes in the polarization ellipse of random electromagnetic beams propagating through the turbulent atmosphere, Waves in Random and Complex Media 15(3), 2005, pp. 353–364.
- [19] JINHONG LI, WEIWEI WANG, MEILING DUAN, JINLIN WEI, Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams, Optics Express 24(18), 2016, pp. 20413–20423.
- [20] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation through Random Media, SPIE Press, Bellingham, 2005.
- [21] YURA H.T., Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium, Applied Optics 11(6), 1972, pp. 1399–1406.
- [22] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series and Products, Academic Press, New York, 2007.
- [23] XIAOLING JI, XIAOWEN CHEN, Changes in the polarization, the coherence and the spectrum of partially coherent electromagnetic Hermite–Gaussian beams in turbulence, Optics and Laser Technology 41(2), 2009, pp. 165–171.
- [24] ROYCHOWDHURY H., KOROTKOVA O., Realizability conditions for electromagnetic Gaussian Schell-model sources, Optics Communications 249(4–6), 2005, pp. 379–385.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3a012f76-3f33-478c-8817-3d64552e0743